Cargando…
Prediction Models for Radiation-Induced Neurocognitive Decline in Adult Patients With Primary or Secondary Brain Tumors: A Systematic Review
PURPOSE: Although an increasing body of literature suggests a relationship between brain irradiation and deterioration of neurocognitive function, it remains as the standard therapeutic and prophylactic modality in patients with brain tumors. This review was aimed to abstract and evaluate the predic...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9009149/ https://www.ncbi.nlm.nih.gov/pubmed/35432113 http://dx.doi.org/10.3389/fpsyg.2022.853472 |
_version_ | 1784687214350827520 |
---|---|
author | Tohidinezhad, Fariba Di Perri, Dario Zegers, Catharina M. L. Dijkstra, Jeanette Anten, Monique Dekker, Andre Van Elmpt, Wouter Eekers, Daniëlle B. P. Traverso, Alberto |
author_facet | Tohidinezhad, Fariba Di Perri, Dario Zegers, Catharina M. L. Dijkstra, Jeanette Anten, Monique Dekker, Andre Van Elmpt, Wouter Eekers, Daniëlle B. P. Traverso, Alberto |
author_sort | Tohidinezhad, Fariba |
collection | PubMed |
description | PURPOSE: Although an increasing body of literature suggests a relationship between brain irradiation and deterioration of neurocognitive function, it remains as the standard therapeutic and prophylactic modality in patients with brain tumors. This review was aimed to abstract and evaluate the prediction models for radiation-induced neurocognitive decline in patients with primary or secondary brain tumors. METHODS: MEDLINE was searched on October 31, 2021 for publications containing relevant truncation and MeSH terms related to “radiotherapy,” “brain,” “prediction model,” and “neurocognitive impairments.” Risk of bias was assessed using the Prediction model Risk Of Bias ASsessment Tool. RESULTS: Of 3,580 studies reviewed, 23 prediction models were identified. Age, tumor location, education level, baseline neurocognitive score, and radiation dose to the hippocampus were the most common predictors in the models. The Hopkins verbal learning (n = 7) and the trail making tests (n = 4) were the most frequent outcome assessment tools. All studies used regression (n = 14 linear, n = 8 logistic, and n = 4 Cox) as machine learning method. All models were judged to have a high risk of bias mainly due to issues in the analysis. CONCLUSION: Existing models have limited quality and are at high risk of bias. Following recommendations are outlined in this review to improve future models: developing cognitive assessment instruments taking into account the peculiar traits of the different brain tumors and radiation modalities; adherence to model development and validation guidelines; careful choice of candidate predictors according to the literature and domain expert consensus; and considering radiation dose to brain substructures as they can provide important information on specific neurocognitive impairments. |
format | Online Article Text |
id | pubmed-9009149 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-90091492022-04-15 Prediction Models for Radiation-Induced Neurocognitive Decline in Adult Patients With Primary or Secondary Brain Tumors: A Systematic Review Tohidinezhad, Fariba Di Perri, Dario Zegers, Catharina M. L. Dijkstra, Jeanette Anten, Monique Dekker, Andre Van Elmpt, Wouter Eekers, Daniëlle B. P. Traverso, Alberto Front Psychol Psychology PURPOSE: Although an increasing body of literature suggests a relationship between brain irradiation and deterioration of neurocognitive function, it remains as the standard therapeutic and prophylactic modality in patients with brain tumors. This review was aimed to abstract and evaluate the prediction models for radiation-induced neurocognitive decline in patients with primary or secondary brain tumors. METHODS: MEDLINE was searched on October 31, 2021 for publications containing relevant truncation and MeSH terms related to “radiotherapy,” “brain,” “prediction model,” and “neurocognitive impairments.” Risk of bias was assessed using the Prediction model Risk Of Bias ASsessment Tool. RESULTS: Of 3,580 studies reviewed, 23 prediction models were identified. Age, tumor location, education level, baseline neurocognitive score, and radiation dose to the hippocampus were the most common predictors in the models. The Hopkins verbal learning (n = 7) and the trail making tests (n = 4) were the most frequent outcome assessment tools. All studies used regression (n = 14 linear, n = 8 logistic, and n = 4 Cox) as machine learning method. All models were judged to have a high risk of bias mainly due to issues in the analysis. CONCLUSION: Existing models have limited quality and are at high risk of bias. Following recommendations are outlined in this review to improve future models: developing cognitive assessment instruments taking into account the peculiar traits of the different brain tumors and radiation modalities; adherence to model development and validation guidelines; careful choice of candidate predictors according to the literature and domain expert consensus; and considering radiation dose to brain substructures as they can provide important information on specific neurocognitive impairments. Frontiers Media S.A. 2022-03-31 /pmc/articles/PMC9009149/ /pubmed/35432113 http://dx.doi.org/10.3389/fpsyg.2022.853472 Text en Copyright © 2022 Tohidinezhad, Di Perri, Zegers, Dijkstra, Anten, Dekker, Van Elmpt, Eekers and Traverso. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Psychology Tohidinezhad, Fariba Di Perri, Dario Zegers, Catharina M. L. Dijkstra, Jeanette Anten, Monique Dekker, Andre Van Elmpt, Wouter Eekers, Daniëlle B. P. Traverso, Alberto Prediction Models for Radiation-Induced Neurocognitive Decline in Adult Patients With Primary or Secondary Brain Tumors: A Systematic Review |
title | Prediction Models for Radiation-Induced Neurocognitive Decline in Adult Patients With Primary or Secondary Brain Tumors: A Systematic Review |
title_full | Prediction Models for Radiation-Induced Neurocognitive Decline in Adult Patients With Primary or Secondary Brain Tumors: A Systematic Review |
title_fullStr | Prediction Models for Radiation-Induced Neurocognitive Decline in Adult Patients With Primary or Secondary Brain Tumors: A Systematic Review |
title_full_unstemmed | Prediction Models for Radiation-Induced Neurocognitive Decline in Adult Patients With Primary or Secondary Brain Tumors: A Systematic Review |
title_short | Prediction Models for Radiation-Induced Neurocognitive Decline in Adult Patients With Primary or Secondary Brain Tumors: A Systematic Review |
title_sort | prediction models for radiation-induced neurocognitive decline in adult patients with primary or secondary brain tumors: a systematic review |
topic | Psychology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9009149/ https://www.ncbi.nlm.nih.gov/pubmed/35432113 http://dx.doi.org/10.3389/fpsyg.2022.853472 |
work_keys_str_mv | AT tohidinezhadfariba predictionmodelsforradiationinducedneurocognitivedeclineinadultpatientswithprimaryorsecondarybraintumorsasystematicreview AT diperridario predictionmodelsforradiationinducedneurocognitivedeclineinadultpatientswithprimaryorsecondarybraintumorsasystematicreview AT zegerscatharinaml predictionmodelsforradiationinducedneurocognitivedeclineinadultpatientswithprimaryorsecondarybraintumorsasystematicreview AT dijkstrajeanette predictionmodelsforradiationinducedneurocognitivedeclineinadultpatientswithprimaryorsecondarybraintumorsasystematicreview AT antenmonique predictionmodelsforradiationinducedneurocognitivedeclineinadultpatientswithprimaryorsecondarybraintumorsasystematicreview AT dekkerandre predictionmodelsforradiationinducedneurocognitivedeclineinadultpatientswithprimaryorsecondarybraintumorsasystematicreview AT vanelmptwouter predictionmodelsforradiationinducedneurocognitivedeclineinadultpatientswithprimaryorsecondarybraintumorsasystematicreview AT eekersdaniellebp predictionmodelsforradiationinducedneurocognitivedeclineinadultpatientswithprimaryorsecondarybraintumorsasystematicreview AT traversoalberto predictionmodelsforradiationinducedneurocognitivedeclineinadultpatientswithprimaryorsecondarybraintumorsasystematicreview |