Cargando…
A long noncoding RNA GTF2IRD2P1 suppresses cell proliferation in bladder cancer by inhibiting the Wnt/β‑catenin signaling pathway
BACKGROUND: There is growing evidence that long non-coding RNAs (LncRNAs) are key in the development of a variety of human tumors. However, the role of lncRNA GTF2IRD2P1 has not been well studied in cancer. The impact of GTF2IRD2P1 on the biological function and clinical relevance in bladder cancer...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9009331/ https://www.ncbi.nlm.nih.gov/pubmed/35433119 http://dx.doi.org/10.7717/peerj.13220 |
_version_ | 1784687244976586752 |
---|---|
author | Huang, Zhuo Gao, Hongbin Qing, Liangliang Wang, Biao He, Chaoyong Luo, Ning Lu, Chuncheng Fan, Shipeng Gu, Peng Zhao, Hui |
author_facet | Huang, Zhuo Gao, Hongbin Qing, Liangliang Wang, Biao He, Chaoyong Luo, Ning Lu, Chuncheng Fan, Shipeng Gu, Peng Zhao, Hui |
author_sort | Huang, Zhuo |
collection | PubMed |
description | BACKGROUND: There is growing evidence that long non-coding RNAs (LncRNAs) are key in the development of a variety of human tumors. However, the role of lncRNA GTF2IRD2P1 has not been well studied in cancer. The impact of GTF2IRD2P1 on the biological function and clinical relevance in bladder cancer is largely unknown. This study aimed to investigate the biological role of GTF2IRD2P1 in bladder evolution and carcinogenesis. METHODS: We used bioinformatics to obtain the lncRNA GTF2IRD2P1 from bladder urothelial carcinoma (BLCA) in The Cancer Genome Atlas (TCGA) database. The expression of lncRNA GTF2IRD2P1 was detected by qRT-PCR. The CCK8 assay and flow cytometry were used to detect the lncRNA GTF2IRD2P1 function on the proliferation of bladder cancer cells. A western blot was used to calculate the protein level of cell cycle proteins and Wnt signaling pathway proteins. The effect of lncRNA GTF2IRD2P1 on tumorigenesis of bladder cancer was confirmed by a xenograft nude mouse model. RESULTS: GTF2IRD2P1 expression was found to be lower in both human bladder cancer tissues and cell lines (UM-UC-3, RT4, and 5637), and elevated in T24 compared to the corresponding normal controls. GTF2IRD2P1 expression was also enhanced after transfection of UM-UC-3 cells with the overexpression vector. Meanwhile, overexpression of GTF2IRD2P1 inhibited the proliferation of UM-UC-3 and prolonged the cell cycle. The silencing of GTF2IRD2P1 significantly increased the proliferation and shortened the cell cycle of T24 cells and induced Wnt signaling activity to promote the progression of bladder cancer. Similarly, the transplanted tumor nude mouse model demonstrated that silencing GTF2IRD2P1 strengthens the progression of bladder cancer by targeting the Wnt signaling pathway. |
format | Online Article Text |
id | pubmed-9009331 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | PeerJ Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-90093312022-04-15 A long noncoding RNA GTF2IRD2P1 suppresses cell proliferation in bladder cancer by inhibiting the Wnt/β‑catenin signaling pathway Huang, Zhuo Gao, Hongbin Qing, Liangliang Wang, Biao He, Chaoyong Luo, Ning Lu, Chuncheng Fan, Shipeng Gu, Peng Zhao, Hui PeerJ Bioinformatics BACKGROUND: There is growing evidence that long non-coding RNAs (LncRNAs) are key in the development of a variety of human tumors. However, the role of lncRNA GTF2IRD2P1 has not been well studied in cancer. The impact of GTF2IRD2P1 on the biological function and clinical relevance in bladder cancer is largely unknown. This study aimed to investigate the biological role of GTF2IRD2P1 in bladder evolution and carcinogenesis. METHODS: We used bioinformatics to obtain the lncRNA GTF2IRD2P1 from bladder urothelial carcinoma (BLCA) in The Cancer Genome Atlas (TCGA) database. The expression of lncRNA GTF2IRD2P1 was detected by qRT-PCR. The CCK8 assay and flow cytometry were used to detect the lncRNA GTF2IRD2P1 function on the proliferation of bladder cancer cells. A western blot was used to calculate the protein level of cell cycle proteins and Wnt signaling pathway proteins. The effect of lncRNA GTF2IRD2P1 on tumorigenesis of bladder cancer was confirmed by a xenograft nude mouse model. RESULTS: GTF2IRD2P1 expression was found to be lower in both human bladder cancer tissues and cell lines (UM-UC-3, RT4, and 5637), and elevated in T24 compared to the corresponding normal controls. GTF2IRD2P1 expression was also enhanced after transfection of UM-UC-3 cells with the overexpression vector. Meanwhile, overexpression of GTF2IRD2P1 inhibited the proliferation of UM-UC-3 and prolonged the cell cycle. The silencing of GTF2IRD2P1 significantly increased the proliferation and shortened the cell cycle of T24 cells and induced Wnt signaling activity to promote the progression of bladder cancer. Similarly, the transplanted tumor nude mouse model demonstrated that silencing GTF2IRD2P1 strengthens the progression of bladder cancer by targeting the Wnt signaling pathway. PeerJ Inc. 2022-04-11 /pmc/articles/PMC9009331/ /pubmed/35433119 http://dx.doi.org/10.7717/peerj.13220 Text en © 2022 Huang et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. |
spellingShingle | Bioinformatics Huang, Zhuo Gao, Hongbin Qing, Liangliang Wang, Biao He, Chaoyong Luo, Ning Lu, Chuncheng Fan, Shipeng Gu, Peng Zhao, Hui A long noncoding RNA GTF2IRD2P1 suppresses cell proliferation in bladder cancer by inhibiting the Wnt/β‑catenin signaling pathway |
title | A long noncoding RNA GTF2IRD2P1 suppresses cell proliferation in bladder cancer by inhibiting the Wnt/β‑catenin signaling pathway |
title_full | A long noncoding RNA GTF2IRD2P1 suppresses cell proliferation in bladder cancer by inhibiting the Wnt/β‑catenin signaling pathway |
title_fullStr | A long noncoding RNA GTF2IRD2P1 suppresses cell proliferation in bladder cancer by inhibiting the Wnt/β‑catenin signaling pathway |
title_full_unstemmed | A long noncoding RNA GTF2IRD2P1 suppresses cell proliferation in bladder cancer by inhibiting the Wnt/β‑catenin signaling pathway |
title_short | A long noncoding RNA GTF2IRD2P1 suppresses cell proliferation in bladder cancer by inhibiting the Wnt/β‑catenin signaling pathway |
title_sort | long noncoding rna gtf2ird2p1 suppresses cell proliferation in bladder cancer by inhibiting the wnt/β‑catenin signaling pathway |
topic | Bioinformatics |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9009331/ https://www.ncbi.nlm.nih.gov/pubmed/35433119 http://dx.doi.org/10.7717/peerj.13220 |
work_keys_str_mv | AT huangzhuo alongnoncodingrnagtf2ird2p1suppressescellproliferationinbladdercancerbyinhibitingthewntbcateninsignalingpathway AT gaohongbin alongnoncodingrnagtf2ird2p1suppressescellproliferationinbladdercancerbyinhibitingthewntbcateninsignalingpathway AT qingliangliang alongnoncodingrnagtf2ird2p1suppressescellproliferationinbladdercancerbyinhibitingthewntbcateninsignalingpathway AT wangbiao alongnoncodingrnagtf2ird2p1suppressescellproliferationinbladdercancerbyinhibitingthewntbcateninsignalingpathway AT hechaoyong alongnoncodingrnagtf2ird2p1suppressescellproliferationinbladdercancerbyinhibitingthewntbcateninsignalingpathway AT luoning alongnoncodingrnagtf2ird2p1suppressescellproliferationinbladdercancerbyinhibitingthewntbcateninsignalingpathway AT luchuncheng alongnoncodingrnagtf2ird2p1suppressescellproliferationinbladdercancerbyinhibitingthewntbcateninsignalingpathway AT fanshipeng alongnoncodingrnagtf2ird2p1suppressescellproliferationinbladdercancerbyinhibitingthewntbcateninsignalingpathway AT gupeng alongnoncodingrnagtf2ird2p1suppressescellproliferationinbladdercancerbyinhibitingthewntbcateninsignalingpathway AT zhaohui alongnoncodingrnagtf2ird2p1suppressescellproliferationinbladdercancerbyinhibitingthewntbcateninsignalingpathway AT huangzhuo longnoncodingrnagtf2ird2p1suppressescellproliferationinbladdercancerbyinhibitingthewntbcateninsignalingpathway AT gaohongbin longnoncodingrnagtf2ird2p1suppressescellproliferationinbladdercancerbyinhibitingthewntbcateninsignalingpathway AT qingliangliang longnoncodingrnagtf2ird2p1suppressescellproliferationinbladdercancerbyinhibitingthewntbcateninsignalingpathway AT wangbiao longnoncodingrnagtf2ird2p1suppressescellproliferationinbladdercancerbyinhibitingthewntbcateninsignalingpathway AT hechaoyong longnoncodingrnagtf2ird2p1suppressescellproliferationinbladdercancerbyinhibitingthewntbcateninsignalingpathway AT luoning longnoncodingrnagtf2ird2p1suppressescellproliferationinbladdercancerbyinhibitingthewntbcateninsignalingpathway AT luchuncheng longnoncodingrnagtf2ird2p1suppressescellproliferationinbladdercancerbyinhibitingthewntbcateninsignalingpathway AT fanshipeng longnoncodingrnagtf2ird2p1suppressescellproliferationinbladdercancerbyinhibitingthewntbcateninsignalingpathway AT gupeng longnoncodingrnagtf2ird2p1suppressescellproliferationinbladdercancerbyinhibitingthewntbcateninsignalingpathway AT zhaohui longnoncodingrnagtf2ird2p1suppressescellproliferationinbladdercancerbyinhibitingthewntbcateninsignalingpathway |