Cargando…

Planning as Inference in Epidemiological Dynamics Models

In this work we demonstrate how to automate parts of the infectious disease-control policy-making process via performing inference in existing epidemiological models. The kind of inference tasks undertaken include computing the posterior distribution over controllable, via direct policy-making choic...

Descripción completa

Detalles Bibliográficos
Autores principales: Wood, Frank, Warrington, Andrew, Naderiparizi, Saeid, Weilbach, Christian, Masrani, Vaden, Harvey, William, Ścibior, Adam, Beronov, Boyan, Grefenstette, John, Campbell, Duncan, Nasseri, S. Ali
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9009395/
https://www.ncbi.nlm.nih.gov/pubmed/35434605
http://dx.doi.org/10.3389/frai.2021.550603
_version_ 1784687258863927296
author Wood, Frank
Warrington, Andrew
Naderiparizi, Saeid
Weilbach, Christian
Masrani, Vaden
Harvey, William
Ścibior, Adam
Beronov, Boyan
Grefenstette, John
Campbell, Duncan
Nasseri, S. Ali
author_facet Wood, Frank
Warrington, Andrew
Naderiparizi, Saeid
Weilbach, Christian
Masrani, Vaden
Harvey, William
Ścibior, Adam
Beronov, Boyan
Grefenstette, John
Campbell, Duncan
Nasseri, S. Ali
author_sort Wood, Frank
collection PubMed
description In this work we demonstrate how to automate parts of the infectious disease-control policy-making process via performing inference in existing epidemiological models. The kind of inference tasks undertaken include computing the posterior distribution over controllable, via direct policy-making choices, simulation model parameters that give rise to acceptable disease progression outcomes. Among other things, we illustrate the use of a probabilistic programming language that automates inference in existing simulators. Neither the full capabilities of this tool for automating inference nor its utility for planning is widely disseminated at the current time. Timely gains in understanding about how such simulation-based models and inference automation tools applied in support of policy-making could lead to less economically damaging policy prescriptions, particularly during the current COVID-19 pandemic.
format Online
Article
Text
id pubmed-9009395
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-90093952022-04-15 Planning as Inference in Epidemiological Dynamics Models Wood, Frank Warrington, Andrew Naderiparizi, Saeid Weilbach, Christian Masrani, Vaden Harvey, William Ścibior, Adam Beronov, Boyan Grefenstette, John Campbell, Duncan Nasseri, S. Ali Front Artif Intell Artificial Intelligence In this work we demonstrate how to automate parts of the infectious disease-control policy-making process via performing inference in existing epidemiological models. The kind of inference tasks undertaken include computing the posterior distribution over controllable, via direct policy-making choices, simulation model parameters that give rise to acceptable disease progression outcomes. Among other things, we illustrate the use of a probabilistic programming language that automates inference in existing simulators. Neither the full capabilities of this tool for automating inference nor its utility for planning is widely disseminated at the current time. Timely gains in understanding about how such simulation-based models and inference automation tools applied in support of policy-making could lead to less economically damaging policy prescriptions, particularly during the current COVID-19 pandemic. Frontiers Media S.A. 2022-03-31 /pmc/articles/PMC9009395/ /pubmed/35434605 http://dx.doi.org/10.3389/frai.2021.550603 Text en Copyright © 2022 Wood, Warrington, Naderiparizi, Weilbach, Masrani, Harvey, Ścibior, Beronov, Grefenstette, Campbell and Nasseri. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Artificial Intelligence
Wood, Frank
Warrington, Andrew
Naderiparizi, Saeid
Weilbach, Christian
Masrani, Vaden
Harvey, William
Ścibior, Adam
Beronov, Boyan
Grefenstette, John
Campbell, Duncan
Nasseri, S. Ali
Planning as Inference in Epidemiological Dynamics Models
title Planning as Inference in Epidemiological Dynamics Models
title_full Planning as Inference in Epidemiological Dynamics Models
title_fullStr Planning as Inference in Epidemiological Dynamics Models
title_full_unstemmed Planning as Inference in Epidemiological Dynamics Models
title_short Planning as Inference in Epidemiological Dynamics Models
title_sort planning as inference in epidemiological dynamics models
topic Artificial Intelligence
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9009395/
https://www.ncbi.nlm.nih.gov/pubmed/35434605
http://dx.doi.org/10.3389/frai.2021.550603
work_keys_str_mv AT woodfrank planningasinferenceinepidemiologicaldynamicsmodels
AT warringtonandrew planningasinferenceinepidemiologicaldynamicsmodels
AT naderiparizisaeid planningasinferenceinepidemiologicaldynamicsmodels
AT weilbachchristian planningasinferenceinepidemiologicaldynamicsmodels
AT masranivaden planningasinferenceinepidemiologicaldynamicsmodels
AT harveywilliam planningasinferenceinepidemiologicaldynamicsmodels
AT scibioradam planningasinferenceinepidemiologicaldynamicsmodels
AT beronovboyan planningasinferenceinepidemiologicaldynamicsmodels
AT grefenstettejohn planningasinferenceinepidemiologicaldynamicsmodels
AT campbellduncan planningasinferenceinepidemiologicaldynamicsmodels
AT nasserisali planningasinferenceinepidemiologicaldynamicsmodels