Cargando…
A novel multi-module integrated intrusion detection system for high-dimensional imbalanced data
The high dimension, complexity, and imbalance of network data are hot issues in the field of intrusion detection. Nowadays, intrusion detection systems face some challenges in improving the accuracy of minority classes detection, detecting unknown attacks, and reducing false alarm rates. To address...
Autores principales: | Cui, Jiyuan, Zong, Liansong, Xie, Jianhua, Tang, Mingwei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9009502/ https://www.ncbi.nlm.nih.gov/pubmed/35440844 http://dx.doi.org/10.1007/s10489-022-03361-2 |
Ejemplares similares
-
An Imbalanced Generative Adversarial Network-Based Approach for Network Intrusion Detection in an Imbalanced Dataset
por: Rao, Yamarthi Narasimha, et al.
Publicado: (2023) -
A Few-Shot Learning-Based Siamese Capsule Network for Intrusion Detection with Imbalanced Training Data
por: Wang, Zu-Min, et al.
Publicado: (2021) -
SMOTE for high-dimensional class-imbalanced data
por: Blagus, Rok, et al.
Publicado: (2013) -
Class prediction for high-dimensional class-imbalanced data
por: Blagus, Rok, et al.
Publicado: (2010) -
Hellinger distance-based stable sparse feature selection for high-dimensional class-imbalanced data
por: Fu, Guang-Hui, et al.
Publicado: (2020)