Cargando…

Performance of COVID-19 case-based surveillance system in FCT, Nigeria, March 2020 –January 2021

INTRODUCTION: The emergence of novel SARS-CoV-2 has caused a pandemic of Coronavirus Disease 19 (COVID-19) which has spread exponentially worldwide. A robust surveillance system is essential for correct estimation of the disease burden and containment of the pandemic. We evaluated the performance of...

Descripción completa

Detalles Bibliográficos
Autores principales: Umeozuru, Chikodi Modesta, Usman, Aishat Bukola, Olorukooba, Abdulhakeem Abayomi, Abdullahi, Idris Nasir, John, Doris Japhet, Lawal, Lukman Ademola, Uwazie, Charles Chukwudi, Balogun, Muhammad Shakir
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9009682/
https://www.ncbi.nlm.nih.gov/pubmed/35421123
http://dx.doi.org/10.1371/journal.pone.0264839
Descripción
Sumario:INTRODUCTION: The emergence of novel SARS-CoV-2 has caused a pandemic of Coronavirus Disease 19 (COVID-19) which has spread exponentially worldwide. A robust surveillance system is essential for correct estimation of the disease burden and containment of the pandemic. We evaluated the performance of COVID-19 case-based surveillance system in FCT, Nigeria and assessed its key attributes. METHODS: We used a cross-sectional study design, comprising a survey, key informant interview, record review and secondary data analysis. A self-administered, semi-structured questionnaire was administered to key stakeholders to assess the attributes and process of operation of the surveillance system using CDC’s Updated Guidelines for Evaluation of Public Health Surveillance System 2001. Data collected alongside surveillance data from March 2020 to January 2021 were analyzed and summarized using descriptive statistics. RESULTS: Out of 69,338 suspected cases, 12,595 tested positive with RT-PCR with a positive predictive value (PPV) of 18%. Healthcare workers were identified as high-risk group with a prevalence of 23.5%. About 82% respondents perceived the system to be simple, 85.5% posited that the system was flexible and easily accommodates changes, 71.4% reported that the system was acceptable and expressed willingness to continue participation. Representativeness of the system was 93%, stability 40%, data quality 56.2% and timeliness 45.5%, estimated result turnaround time (TAT) was suboptimal. CONCLUSION: The system was found to be useful, simple, flexible, sensitive, acceptable, with good representativeness but the stability, data quality and timeliness was poor. The system meets initial surveillance objectives but rapid expansion of sample collection and testing sites, improvement of TAT, sustainable funding, improvement of electronic database, continuous provision of logistics, supplies and additional trainings are needed to address identified weaknesses, optimize the system performance and meet increasing need of case detection in the wake of rapidly spreading pandemic. More risk-group persons should be tested to improve surveillance effectiveness.