Cargando…
Understanding glioblastoma invasion using physically-guided neural networks with internal variables
Microfluidic capacities for both recreating and monitoring cell cultures have opened the door to the use of Data Science and Machine Learning tools for understanding and simulating tumor evolution under controlled conditions. In this work, we show how these techniques could be applied to study Gliob...
Autores principales: | Ayensa-Jiménez, Jacobo, Doweidar, Mohamed H., Sanz-Herrera, Jose A., Doblare, Manuel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9009781/ https://www.ncbi.nlm.nih.gov/pubmed/35377875 http://dx.doi.org/10.1371/journal.pcbi.1010019 |
Ejemplares similares
-
A Mathematical Modelling Study of Chemotactic Dynamics in Cell Cultures: The Impact of Spatio-temporal Heterogeneity
por: Ayensa-Jiménez, Jacobo, et al.
Publicado: (2023) -
Mathematical formulation and parametric analysis of in vitro cell models in microfluidic devices: application to different stages of glioblastoma evolution
por: Ayensa-Jiménez, Jacobo, et al.
Publicado: (2020) -
Cartilage Dysfunction in ALS Patients as Side Effect of Motion Loss: 3D Mechano-Electrochemical Computational Model
por: Manzano, Sara, et al.
Publicado: (2014) -
Inhomogeneous Response of Articular Cartilage: A Three-Dimensional Multiphasic Heterogeneous Study
por: Manzano, Sara, et al.
Publicado: (2016) -
Computational Multiscale Solvers for Continuum Approaches
por: Montero-Chacón, Francisco, et al.
Publicado: (2019)