Cargando…
Prediction, Knowledge, and Explainability: Examining the Use of General Value Functions in Machine Knowledge
Within computational reinforcement learning, a growing body of work seeks to express an agent's knowledge of its world through large collections of predictions. While systems that encode predictions as General Value Functions (GVFs) have seen numerous developments in both theory and application...
Autores principales: | Kearney, Alex, Günther, Johannes, Pilarski, Patrick M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9010283/ https://www.ncbi.nlm.nih.gov/pubmed/35434609 http://dx.doi.org/10.3389/frai.2022.826724 |
Ejemplares similares
-
Predictive keywords: Using machine learning to explain document characteristics
por: Kyröläinen, Aki-Juhani, et al.
Publicado: (2023) -
CycleStyleGAN-Based Knowledge Transfer for a Machining Digital Twin
por: Zotov, Evgeny, et al.
Publicado: (2021) -
Using knowledge graphs to infer gene expression in plants
por: Thessen, Anne E., et al.
Publicado: (2023) -
Identifying Ingredient Substitutions Using a Knowledge Graph of Food
por: Shirai, Sola S., et al.
Publicado: (2021) -
Knowledge distillation in deep learning and its applications
por: Alkhulaifi, Abdolmaged, et al.
Publicado: (2021)