Cargando…

Functional characterization of variants of unknown significance in a spinocerebellar ataxia patient using an unsupervised machine learning pipeline

CAG-expanded ATXN7 has been previously defined in the pathogenesis of spinocerebellar ataxia type 7 (SCA7), a polyglutamine expansion autosomal dominant cerebellar ataxia. Pathology in SCA7 occurs as a result of a CAG triplet repeat expansion in excess of 37 in the first exon of ATXN7, which encodes...

Descripción completa

Detalles Bibliográficos
Autores principales: Nath, Siddharth, Caron, Nicholas S., May, Linda, Gluscencova, Oxana B., Kolesar, Jill, Brady, Lauren, Kaufman, Brett A., Boulianne, Gabrielle L., Rodriguez, Amadeo R., Tarnopolsky, Mark A., Truant, Ray
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9010413/
https://www.ncbi.nlm.nih.gov/pubmed/35422034
http://dx.doi.org/10.1038/s41439-022-00188-8
_version_ 1784687470890188800
author Nath, Siddharth
Caron, Nicholas S.
May, Linda
Gluscencova, Oxana B.
Kolesar, Jill
Brady, Lauren
Kaufman, Brett A.
Boulianne, Gabrielle L.
Rodriguez, Amadeo R.
Tarnopolsky, Mark A.
Truant, Ray
author_facet Nath, Siddharth
Caron, Nicholas S.
May, Linda
Gluscencova, Oxana B.
Kolesar, Jill
Brady, Lauren
Kaufman, Brett A.
Boulianne, Gabrielle L.
Rodriguez, Amadeo R.
Tarnopolsky, Mark A.
Truant, Ray
author_sort Nath, Siddharth
collection PubMed
description CAG-expanded ATXN7 has been previously defined in the pathogenesis of spinocerebellar ataxia type 7 (SCA7), a polyglutamine expansion autosomal dominant cerebellar ataxia. Pathology in SCA7 occurs as a result of a CAG triplet repeat expansion in excess of 37 in the first exon of ATXN7, which encodes ataxin-7. SCA7 presents clinically with spinocerebellar ataxia and cone-rod dystrophy. Here, we present a novel spinocerebellar ataxia variant occurring in a patient with mutations in both ATXN7 and TOP1MT, which encodes mitochondrial topoisomerase I (top1mt). Using machine-guided, unbiased microscopy image analysis, we demonstrate alterations in ataxin-7 subcellular localization, and through high-fidelity measurements of cellular respiration, bioenergetic defects in association with top1mt mutations. We identify ataxin-7 Q35P and top1mt R111W as deleterious mutations, potentially contributing to disease states. We recapitulate our mutations through Drosophila genetic models. Our work provides important insight into the cellular biology of ataxin-7 and top1mt and offers insight into the pathogenesis of spinocerebellar ataxia applicable to multiple subtypes of the illness. Moreover, our study demonstrates an effective pipeline for the characterization of previously unreported genetic variants at the level of cell biology.
format Online
Article
Text
id pubmed-9010413
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-90104132022-04-28 Functional characterization of variants of unknown significance in a spinocerebellar ataxia patient using an unsupervised machine learning pipeline Nath, Siddharth Caron, Nicholas S. May, Linda Gluscencova, Oxana B. Kolesar, Jill Brady, Lauren Kaufman, Brett A. Boulianne, Gabrielle L. Rodriguez, Amadeo R. Tarnopolsky, Mark A. Truant, Ray Hum Genome Var Article CAG-expanded ATXN7 has been previously defined in the pathogenesis of spinocerebellar ataxia type 7 (SCA7), a polyglutamine expansion autosomal dominant cerebellar ataxia. Pathology in SCA7 occurs as a result of a CAG triplet repeat expansion in excess of 37 in the first exon of ATXN7, which encodes ataxin-7. SCA7 presents clinically with spinocerebellar ataxia and cone-rod dystrophy. Here, we present a novel spinocerebellar ataxia variant occurring in a patient with mutations in both ATXN7 and TOP1MT, which encodes mitochondrial topoisomerase I (top1mt). Using machine-guided, unbiased microscopy image analysis, we demonstrate alterations in ataxin-7 subcellular localization, and through high-fidelity measurements of cellular respiration, bioenergetic defects in association with top1mt mutations. We identify ataxin-7 Q35P and top1mt R111W as deleterious mutations, potentially contributing to disease states. We recapitulate our mutations through Drosophila genetic models. Our work provides important insight into the cellular biology of ataxin-7 and top1mt and offers insight into the pathogenesis of spinocerebellar ataxia applicable to multiple subtypes of the illness. Moreover, our study demonstrates an effective pipeline for the characterization of previously unreported genetic variants at the level of cell biology. Nature Publishing Group UK 2022-04-14 /pmc/articles/PMC9010413/ /pubmed/35422034 http://dx.doi.org/10.1038/s41439-022-00188-8 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Nath, Siddharth
Caron, Nicholas S.
May, Linda
Gluscencova, Oxana B.
Kolesar, Jill
Brady, Lauren
Kaufman, Brett A.
Boulianne, Gabrielle L.
Rodriguez, Amadeo R.
Tarnopolsky, Mark A.
Truant, Ray
Functional characterization of variants of unknown significance in a spinocerebellar ataxia patient using an unsupervised machine learning pipeline
title Functional characterization of variants of unknown significance in a spinocerebellar ataxia patient using an unsupervised machine learning pipeline
title_full Functional characterization of variants of unknown significance in a spinocerebellar ataxia patient using an unsupervised machine learning pipeline
title_fullStr Functional characterization of variants of unknown significance in a spinocerebellar ataxia patient using an unsupervised machine learning pipeline
title_full_unstemmed Functional characterization of variants of unknown significance in a spinocerebellar ataxia patient using an unsupervised machine learning pipeline
title_short Functional characterization of variants of unknown significance in a spinocerebellar ataxia patient using an unsupervised machine learning pipeline
title_sort functional characterization of variants of unknown significance in a spinocerebellar ataxia patient using an unsupervised machine learning pipeline
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9010413/
https://www.ncbi.nlm.nih.gov/pubmed/35422034
http://dx.doi.org/10.1038/s41439-022-00188-8
work_keys_str_mv AT nathsiddharth functionalcharacterizationofvariantsofunknownsignificanceinaspinocerebellarataxiapatientusinganunsupervisedmachinelearningpipeline
AT caronnicholass functionalcharacterizationofvariantsofunknownsignificanceinaspinocerebellarataxiapatientusinganunsupervisedmachinelearningpipeline
AT maylinda functionalcharacterizationofvariantsofunknownsignificanceinaspinocerebellarataxiapatientusinganunsupervisedmachinelearningpipeline
AT gluscencovaoxanab functionalcharacterizationofvariantsofunknownsignificanceinaspinocerebellarataxiapatientusinganunsupervisedmachinelearningpipeline
AT kolesarjill functionalcharacterizationofvariantsofunknownsignificanceinaspinocerebellarataxiapatientusinganunsupervisedmachinelearningpipeline
AT bradylauren functionalcharacterizationofvariantsofunknownsignificanceinaspinocerebellarataxiapatientusinganunsupervisedmachinelearningpipeline
AT kaufmanbretta functionalcharacterizationofvariantsofunknownsignificanceinaspinocerebellarataxiapatientusinganunsupervisedmachinelearningpipeline
AT bouliannegabriellel functionalcharacterizationofvariantsofunknownsignificanceinaspinocerebellarataxiapatientusinganunsupervisedmachinelearningpipeline
AT rodriguezamadeor functionalcharacterizationofvariantsofunknownsignificanceinaspinocerebellarataxiapatientusinganunsupervisedmachinelearningpipeline
AT tarnopolskymarka functionalcharacterizationofvariantsofunknownsignificanceinaspinocerebellarataxiapatientusinganunsupervisedmachinelearningpipeline
AT truantray functionalcharacterizationofvariantsofunknownsignificanceinaspinocerebellarataxiapatientusinganunsupervisedmachinelearningpipeline