Cargando…
Heterogenous nanocomposite catalysts with rhenium nanostructures for the catalytic reduction of 4-nitrophenol
Stable and efficient heterogenous nanocatalysts for the reduction of 4-nitrophenol (4-NP) has attracted much attention in recent years. In this context, a unique and efficient in situ approach is used for the production of new polymeric nanocomposites (pNCs) containing rhenium nanostructures (ReNSs)...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9010420/ https://www.ncbi.nlm.nih.gov/pubmed/35422074 http://dx.doi.org/10.1038/s41598-022-10237-5 |
Sumario: | Stable and efficient heterogenous nanocatalysts for the reduction of 4-nitrophenol (4-NP) has attracted much attention in recent years. In this context, a unique and efficient in situ approach is used for the production of new polymeric nanocomposites (pNCs) containing rhenium nanostructures (ReNSs). These rare materials should facilitate the catalytic decomposition of 4-NP, in turn ensuring increased catalytic activity and stability. These nanomaterials were analyzed using Fourier-Transformation Infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), and X-ray powder diffraction (XRD). The efficiency of the catalytic reaction was estimated based on the acquired UV–Vis spectra, which enabled the estimation of the catalytic activity using pseud-first order modelling. The applied method resulted in the successful production and efficient loading of ReNSs in the polymeric matrices. Amino functionalities played a primary role in the reduction process. Moreover, the functionality that is derived from 1.1′-carbonyl imidazole improved the availability of the ReNSs, which resulted in 90% conversion of 4-NP with a maximum rate constant of 0.29 min(−1) over 11 subsequent catalytic cycles. This effect was observed despite the trace amount of Re in the pNCs (~ 5%), suggesting a synergistic effect between the polymeric base and the ReNSs-based catalyst. |
---|