Cargando…

MRA-free intracranial vessel localization on MR vessel wall images

Analysis of vessel morphology is important in assessing intracranial atherosclerosis disease (ICAD). Recently, magnetic resonance (MR) vessel wall imaging (VWI) has been introduced to image ICAD and characterize morphology for atherosclerotic lesions. In order to automatically perform quantitative a...

Descripción completa

Detalles Bibliográficos
Autores principales: Fan, Weijia, Sang, Yudi, Zhou, Hanyue, Xiao, Jiayu, Fan, Zhaoyang, Ruan, Dan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9010428/
https://www.ncbi.nlm.nih.gov/pubmed/35422490
http://dx.doi.org/10.1038/s41598-022-10256-2
Descripción
Sumario:Analysis of vessel morphology is important in assessing intracranial atherosclerosis disease (ICAD). Recently, magnetic resonance (MR) vessel wall imaging (VWI) has been introduced to image ICAD and characterize morphology for atherosclerotic lesions. In order to automatically perform quantitative analysis on VWI data, MR angiography (MRA) acquired in the same imaging session is typically used to localize the vessel segments of interest. However, MRA may be unavailable caused by the lack or failure of the sequence in a VWI protocol. This study aims to investigate the feasibility to infer the vessel location directly from VWI. We propose to synergize an atlas-based method to preserve general vessel structure topology with a deep learning network in the motion field domain to correct the residual geometric error. Performance is quantified by examining the agreement between the extracted vessel structures from the pair-acquired and alignment-corrected angiogram, and the estimated output using a cross-validation scheme. Our proposed pipeline yields clinically feasible performance in localizing intracranial vessels, demonstrating the promise of performing vessel morphology analysis using VWI alone.