Cargando…
SRIQ clustering: A fusion of Random Forest, QT clustering, and KNN concepts
Gene expression profiling together with unsupervised analysis methods, typically clustering methods, has been used extensively in cancer research to unravel, e.g., new molecular subtypes that hold promise of disease refinement that may ultimately benefit patients. However, many of the commonly used...
Autores principales: | Karlström, Jacob, Aine, Mattias, Staaf, Johan, Veerla, Srinivas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9010551/ https://www.ncbi.nlm.nih.gov/pubmed/35465158 http://dx.doi.org/10.1016/j.csbj.2022.03.036 |
Ejemplares similares
-
Random KNN feature selection - a fast and stable alternative to Random Forests
por: Li, Shengqiao, et al.
Publicado: (2011) -
Fault Detection Using the Clustering-kNN Rule for Gas Sensor Arrays
por: Yang, Jingli, et al.
Publicado: (2016) -
Perturbation and stability of PAM50 subtyping in population-based primary invasive breast cancer
por: Veerla, Srinivas, et al.
Publicado: (2023) -
Tumor purity adjusted beta values improve biological interpretability of high-dimensional DNA methylation data
por: Staaf, Johan, et al.
Publicado: (2022) -
An Adaptive Weighted KNN Positioning Method Based on Omnidirectional Fingerprint Database and Twice Affinity Propagation Clustering
por: Bi, Jingxue, et al.
Publicado: (2018)