Cargando…
AEROS: AdaptivE RObust Least-Squares for Graph-Based SLAM
In robot localisation and mapping, outliers are unavoidable when loop-closure measurements are taken into account. A single false-positive loop-closure can have a very negative impact on SLAM problems causing an inferior trajectory to be produced or even for the optimisation to fail entirely. To add...
Autores principales: | Ramezani, Milad, Mattamala, Matias, Fallon, Maurice |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9010720/ https://www.ncbi.nlm.nih.gov/pubmed/35433840 http://dx.doi.org/10.3389/frobt.2022.789444 |
Ejemplares similares
-
OSM-SLAM: Aiding SLAM with OpenStreetMaps priors
por: Frosi, Matteo, et al.
Publicado: (2023) -
Pronto: A Multi-Sensor State Estimator for Legged Robots in Real-World Scenarios
por: Camurri, Marco, et al.
Publicado: (2020) -
Swarm SLAM: Challenges and Perspectives
por: Kegeleirs, Miquel, et al.
Publicado: (2021) -
Multi-Session Visual SLAM for Illumination-Invariant Re-Localization in Indoor Environments
por: Labbé, Mathieu, et al.
Publicado: (2022) -
Adaptive Cognitive Mechanisms to Maintain Calibrated Trust and Reliance in Automation
por: Lebiere, Christian, et al.
Publicado: (2021)