Cargando…

The pattern of apolipoprotein A-I lysine carbamylation reflects its lipidation state and the chemical environment within human atherosclerotic aorta

Protein lysine carbamylation is an irreversible post-translational modification resulting in generation of homocitrulline (N-ε-carbamyllysine), which no longer possesses a charged ε-amino moiety. Two distinct pathways can promote protein carbamylation. One results from urea decomposition, forming an...

Descripción completa

Detalles Bibliográficos
Autores principales: Battle, Shawna, Gogonea, Valentin, Willard, Belinda, Wang, Zeneng, Fu, Xiaoming, Huang, Ying, Graham, Linda M., Cameron, Scott J., DiDonato, Joseph A., Crabb, John W., Hazen, Stanley L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Biochemistry and Molecular Biology 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9010765/
https://www.ncbi.nlm.nih.gov/pubmed/35304099
http://dx.doi.org/10.1016/j.jbc.2022.101832
_version_ 1784687553811578880
author Battle, Shawna
Gogonea, Valentin
Willard, Belinda
Wang, Zeneng
Fu, Xiaoming
Huang, Ying
Graham, Linda M.
Cameron, Scott J.
DiDonato, Joseph A.
Crabb, John W.
Hazen, Stanley L.
author_facet Battle, Shawna
Gogonea, Valentin
Willard, Belinda
Wang, Zeneng
Fu, Xiaoming
Huang, Ying
Graham, Linda M.
Cameron, Scott J.
DiDonato, Joseph A.
Crabb, John W.
Hazen, Stanley L.
author_sort Battle, Shawna
collection PubMed
description Protein lysine carbamylation is an irreversible post-translational modification resulting in generation of homocitrulline (N-ε-carbamyllysine), which no longer possesses a charged ε-amino moiety. Two distinct pathways can promote protein carbamylation. One results from urea decomposition, forming an equilibrium mixture of cyanate (CNO(−)) and the reactive electrophile isocyanate. The second pathway involves myeloperoxidase (MPO)-catalyzed oxidation of thiocyanate (SCN(−)), yielding CNO(−) and isocyanate. Apolipoprotein A-I (apoA-I), the major protein constituent of high-density lipoprotein (HDL), is a known target for MPO-catalyzed modification in vivo, converting the cardioprotective lipoprotein into a proatherogenic and proapoptotic one. We hypothesized that monitoring site-specific carbamylation patterns of apoA-I recovered from human atherosclerotic aorta could provide insights into the chemical environment within the artery wall. To test this, we first mapped carbamyllysine obtained from in vitro carbamylation of apoA-I by both the urea-driven (nonenzymatic) and inflammatory-driven (enzymatic) pathways in lipid-poor and lipidated apoA-I (reconstituted HDL). Our results suggest that lysine residues within proximity of the known MPO-binding sites on HDL are preferentially targeted by the enzymatic (MPO) carbamylation pathway, whereas the nonenzymatic pathway leads to nearly uniform distribution of carbamylated lysine residues along the apoA-I polypeptide chain. Quantitative proteomic analyses of apoA-I from human aortic atheroma identified 16 of the 21 lysine residues as carbamylated and suggested that the majority of apoA-I carbamylation in vivo occurs on “lipid-poor” apoA-I forms via the nonenzymatic CNO(−) pathway. Monitoring patterns of apoA-I carbamylation recovered from arterial tissues can provide insights into both apoA-I structure and the chemical environment within human atheroma.
format Online
Article
Text
id pubmed-9010765
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Society for Biochemistry and Molecular Biology
record_format MEDLINE/PubMed
spelling pubmed-90107652022-04-18 The pattern of apolipoprotein A-I lysine carbamylation reflects its lipidation state and the chemical environment within human atherosclerotic aorta Battle, Shawna Gogonea, Valentin Willard, Belinda Wang, Zeneng Fu, Xiaoming Huang, Ying Graham, Linda M. Cameron, Scott J. DiDonato, Joseph A. Crabb, John W. Hazen, Stanley L. J Biol Chem Research Article Protein lysine carbamylation is an irreversible post-translational modification resulting in generation of homocitrulline (N-ε-carbamyllysine), which no longer possesses a charged ε-amino moiety. Two distinct pathways can promote protein carbamylation. One results from urea decomposition, forming an equilibrium mixture of cyanate (CNO(−)) and the reactive electrophile isocyanate. The second pathway involves myeloperoxidase (MPO)-catalyzed oxidation of thiocyanate (SCN(−)), yielding CNO(−) and isocyanate. Apolipoprotein A-I (apoA-I), the major protein constituent of high-density lipoprotein (HDL), is a known target for MPO-catalyzed modification in vivo, converting the cardioprotective lipoprotein into a proatherogenic and proapoptotic one. We hypothesized that monitoring site-specific carbamylation patterns of apoA-I recovered from human atherosclerotic aorta could provide insights into the chemical environment within the artery wall. To test this, we first mapped carbamyllysine obtained from in vitro carbamylation of apoA-I by both the urea-driven (nonenzymatic) and inflammatory-driven (enzymatic) pathways in lipid-poor and lipidated apoA-I (reconstituted HDL). Our results suggest that lysine residues within proximity of the known MPO-binding sites on HDL are preferentially targeted by the enzymatic (MPO) carbamylation pathway, whereas the nonenzymatic pathway leads to nearly uniform distribution of carbamylated lysine residues along the apoA-I polypeptide chain. Quantitative proteomic analyses of apoA-I from human aortic atheroma identified 16 of the 21 lysine residues as carbamylated and suggested that the majority of apoA-I carbamylation in vivo occurs on “lipid-poor” apoA-I forms via the nonenzymatic CNO(−) pathway. Monitoring patterns of apoA-I carbamylation recovered from arterial tissues can provide insights into both apoA-I structure and the chemical environment within human atheroma. American Society for Biochemistry and Molecular Biology 2022-03-15 /pmc/articles/PMC9010765/ /pubmed/35304099 http://dx.doi.org/10.1016/j.jbc.2022.101832 Text en © 2022 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Research Article
Battle, Shawna
Gogonea, Valentin
Willard, Belinda
Wang, Zeneng
Fu, Xiaoming
Huang, Ying
Graham, Linda M.
Cameron, Scott J.
DiDonato, Joseph A.
Crabb, John W.
Hazen, Stanley L.
The pattern of apolipoprotein A-I lysine carbamylation reflects its lipidation state and the chemical environment within human atherosclerotic aorta
title The pattern of apolipoprotein A-I lysine carbamylation reflects its lipidation state and the chemical environment within human atherosclerotic aorta
title_full The pattern of apolipoprotein A-I lysine carbamylation reflects its lipidation state and the chemical environment within human atherosclerotic aorta
title_fullStr The pattern of apolipoprotein A-I lysine carbamylation reflects its lipidation state and the chemical environment within human atherosclerotic aorta
title_full_unstemmed The pattern of apolipoprotein A-I lysine carbamylation reflects its lipidation state and the chemical environment within human atherosclerotic aorta
title_short The pattern of apolipoprotein A-I lysine carbamylation reflects its lipidation state and the chemical environment within human atherosclerotic aorta
title_sort pattern of apolipoprotein a-i lysine carbamylation reflects its lipidation state and the chemical environment within human atherosclerotic aorta
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9010765/
https://www.ncbi.nlm.nih.gov/pubmed/35304099
http://dx.doi.org/10.1016/j.jbc.2022.101832
work_keys_str_mv AT battleshawna thepatternofapolipoproteinailysinecarbamylationreflectsitslipidationstateandthechemicalenvironmentwithinhumanatheroscleroticaorta
AT gogoneavalentin thepatternofapolipoproteinailysinecarbamylationreflectsitslipidationstateandthechemicalenvironmentwithinhumanatheroscleroticaorta
AT willardbelinda thepatternofapolipoproteinailysinecarbamylationreflectsitslipidationstateandthechemicalenvironmentwithinhumanatheroscleroticaorta
AT wangzeneng thepatternofapolipoproteinailysinecarbamylationreflectsitslipidationstateandthechemicalenvironmentwithinhumanatheroscleroticaorta
AT fuxiaoming thepatternofapolipoproteinailysinecarbamylationreflectsitslipidationstateandthechemicalenvironmentwithinhumanatheroscleroticaorta
AT huangying thepatternofapolipoproteinailysinecarbamylationreflectsitslipidationstateandthechemicalenvironmentwithinhumanatheroscleroticaorta
AT grahamlindam thepatternofapolipoproteinailysinecarbamylationreflectsitslipidationstateandthechemicalenvironmentwithinhumanatheroscleroticaorta
AT cameronscottj thepatternofapolipoproteinailysinecarbamylationreflectsitslipidationstateandthechemicalenvironmentwithinhumanatheroscleroticaorta
AT didonatojosepha thepatternofapolipoproteinailysinecarbamylationreflectsitslipidationstateandthechemicalenvironmentwithinhumanatheroscleroticaorta
AT crabbjohnw thepatternofapolipoproteinailysinecarbamylationreflectsitslipidationstateandthechemicalenvironmentwithinhumanatheroscleroticaorta
AT hazenstanleyl thepatternofapolipoproteinailysinecarbamylationreflectsitslipidationstateandthechemicalenvironmentwithinhumanatheroscleroticaorta
AT battleshawna patternofapolipoproteinailysinecarbamylationreflectsitslipidationstateandthechemicalenvironmentwithinhumanatheroscleroticaorta
AT gogoneavalentin patternofapolipoproteinailysinecarbamylationreflectsitslipidationstateandthechemicalenvironmentwithinhumanatheroscleroticaorta
AT willardbelinda patternofapolipoproteinailysinecarbamylationreflectsitslipidationstateandthechemicalenvironmentwithinhumanatheroscleroticaorta
AT wangzeneng patternofapolipoproteinailysinecarbamylationreflectsitslipidationstateandthechemicalenvironmentwithinhumanatheroscleroticaorta
AT fuxiaoming patternofapolipoproteinailysinecarbamylationreflectsitslipidationstateandthechemicalenvironmentwithinhumanatheroscleroticaorta
AT huangying patternofapolipoproteinailysinecarbamylationreflectsitslipidationstateandthechemicalenvironmentwithinhumanatheroscleroticaorta
AT grahamlindam patternofapolipoproteinailysinecarbamylationreflectsitslipidationstateandthechemicalenvironmentwithinhumanatheroscleroticaorta
AT cameronscottj patternofapolipoproteinailysinecarbamylationreflectsitslipidationstateandthechemicalenvironmentwithinhumanatheroscleroticaorta
AT didonatojosepha patternofapolipoproteinailysinecarbamylationreflectsitslipidationstateandthechemicalenvironmentwithinhumanatheroscleroticaorta
AT crabbjohnw patternofapolipoproteinailysinecarbamylationreflectsitslipidationstateandthechemicalenvironmentwithinhumanatheroscleroticaorta
AT hazenstanleyl patternofapolipoproteinailysinecarbamylationreflectsitslipidationstateandthechemicalenvironmentwithinhumanatheroscleroticaorta