Cargando…
Synthetic data for design and evaluation of binary classifiers in the context of Bayesian transfer learning
Transfer learning (TL) techniques can enable effective learning in data scarce domains by allowing one to re-purpose data or scientific knowledge available in relevant source domains for predictive tasks in a target domain of interest. In this Data in Brief article, we present a synthetic dataset fo...
Autores principales: | Maddouri, Omar, Qian, Xiaoning, Alexander, Francis J., Dougherty, Edward R., Yoon, Byung-Jun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9011006/ https://www.ncbi.nlm.nih.gov/pubmed/35434232 http://dx.doi.org/10.1016/j.dib.2022.108113 |
Ejemplares similares
-
Robust importance sampling for error estimation in the context of optimal Bayesian transfer learning
por: Maddouri, Omar, et al.
Publicado: (2022) -
Knowledge-driven learning, optimization, and experimental design under uncertainty for materials discovery
por: Qian, Xiaoning, et al.
Publicado: (2023) -
Which Is Better: Holdout or Full-Sample Classifier Design?
por: Brun, Marcel, et al.
Publicado: (2007) -
A Bayesian method for comparing and combining binary classifiers in the absence of a gold standard
por: Keith, Jonathan M, et al.
Publicado: (2012) -
Incorporating biological prior knowledge for Bayesian learning via maximal knowledge-driven information priors
por: Boluki, Shahin, et al.
Publicado: (2017)