Cargando…
Multi-Dimensional and Objective Assessment of Motion Sickness Susceptibility Based on Machine Learning
BACKGROUND: As human transportation, recreation, and production methods change, the impact of motion sickness (MS) on humans is becoming more prominent. The susceptibility of people to MS can be accurately assessed, which will allow ordinary people to choose comfortable transportation and entertainm...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9011053/ https://www.ncbi.nlm.nih.gov/pubmed/35432161 http://dx.doi.org/10.3389/fneur.2022.824670 |
_version_ | 1784687609417564160 |
---|---|
author | Li, Cong-cong Zhang, Zhuo-ru Liu, Yu-hui Zhang, Tao Zhang, Xu-tao Wang, Han Wang, Xiao-cheng |
author_facet | Li, Cong-cong Zhang, Zhuo-ru Liu, Yu-hui Zhang, Tao Zhang, Xu-tao Wang, Han Wang, Xiao-cheng |
author_sort | Li, Cong-cong |
collection | PubMed |
description | BACKGROUND: As human transportation, recreation, and production methods change, the impact of motion sickness (MS) on humans is becoming more prominent. The susceptibility of people to MS can be accurately assessed, which will allow ordinary people to choose comfortable transportation and entertainment and prevent people susceptible to MS from entering provocative environments. This is valuable for maintaining public health and the safety of tasks. OBJECTIVE: To develop an objective multi-dimensional MS susceptibility assessment model based on physiological indicators that objectively reflect the severity of MS and provide a reference for improving the existing MS susceptibility assessment methods. METHODS: MS was induced in 51 participants using the Coriolis acceleration stimulation. Some portable equipment were used to digitize the typical clinical manifestations of MS and explore the correlations between them and Graybiel's diagnostic criteria. Based on significant objective parameters and selected machine learning (ML) algorithms, several MS susceptibility assessment models were developed, and their performances were compared. RESULTS: Gastric electrical activity, facial skin color, skin temperature, and nystagmus are related to the severity of MS. Among the ML assessment models based on these variables, the support vector machine classifier had the best performance with an accuracy of 88.24%, sensitivity of 91.43%, and specificity of 81.25%. CONCLUSION: The severity of symptoms and signs of MS can be objectively quantified using some indicators. Multi-dimensional and objective assessment models for MS susceptibility based on ML can be successfully established. |
format | Online Article Text |
id | pubmed-9011053 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-90110532022-04-16 Multi-Dimensional and Objective Assessment of Motion Sickness Susceptibility Based on Machine Learning Li, Cong-cong Zhang, Zhuo-ru Liu, Yu-hui Zhang, Tao Zhang, Xu-tao Wang, Han Wang, Xiao-cheng Front Neurol Neurology BACKGROUND: As human transportation, recreation, and production methods change, the impact of motion sickness (MS) on humans is becoming more prominent. The susceptibility of people to MS can be accurately assessed, which will allow ordinary people to choose comfortable transportation and entertainment and prevent people susceptible to MS from entering provocative environments. This is valuable for maintaining public health and the safety of tasks. OBJECTIVE: To develop an objective multi-dimensional MS susceptibility assessment model based on physiological indicators that objectively reflect the severity of MS and provide a reference for improving the existing MS susceptibility assessment methods. METHODS: MS was induced in 51 participants using the Coriolis acceleration stimulation. Some portable equipment were used to digitize the typical clinical manifestations of MS and explore the correlations between them and Graybiel's diagnostic criteria. Based on significant objective parameters and selected machine learning (ML) algorithms, several MS susceptibility assessment models were developed, and their performances were compared. RESULTS: Gastric electrical activity, facial skin color, skin temperature, and nystagmus are related to the severity of MS. Among the ML assessment models based on these variables, the support vector machine classifier had the best performance with an accuracy of 88.24%, sensitivity of 91.43%, and specificity of 81.25%. CONCLUSION: The severity of symptoms and signs of MS can be objectively quantified using some indicators. Multi-dimensional and objective assessment models for MS susceptibility based on ML can be successfully established. Frontiers Media S.A. 2022-04-01 /pmc/articles/PMC9011053/ /pubmed/35432161 http://dx.doi.org/10.3389/fneur.2022.824670 Text en Copyright © 2022 Li, Zhang, Liu, Zhang, Zhang, Wang and Wang. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Neurology Li, Cong-cong Zhang, Zhuo-ru Liu, Yu-hui Zhang, Tao Zhang, Xu-tao Wang, Han Wang, Xiao-cheng Multi-Dimensional and Objective Assessment of Motion Sickness Susceptibility Based on Machine Learning |
title | Multi-Dimensional and Objective Assessment of Motion Sickness Susceptibility Based on Machine Learning |
title_full | Multi-Dimensional and Objective Assessment of Motion Sickness Susceptibility Based on Machine Learning |
title_fullStr | Multi-Dimensional and Objective Assessment of Motion Sickness Susceptibility Based on Machine Learning |
title_full_unstemmed | Multi-Dimensional and Objective Assessment of Motion Sickness Susceptibility Based on Machine Learning |
title_short | Multi-Dimensional and Objective Assessment of Motion Sickness Susceptibility Based on Machine Learning |
title_sort | multi-dimensional and objective assessment of motion sickness susceptibility based on machine learning |
topic | Neurology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9011053/ https://www.ncbi.nlm.nih.gov/pubmed/35432161 http://dx.doi.org/10.3389/fneur.2022.824670 |
work_keys_str_mv | AT licongcong multidimensionalandobjectiveassessmentofmotionsicknesssusceptibilitybasedonmachinelearning AT zhangzhuoru multidimensionalandobjectiveassessmentofmotionsicknesssusceptibilitybasedonmachinelearning AT liuyuhui multidimensionalandobjectiveassessmentofmotionsicknesssusceptibilitybasedonmachinelearning AT zhangtao multidimensionalandobjectiveassessmentofmotionsicknesssusceptibilitybasedonmachinelearning AT zhangxutao multidimensionalandobjectiveassessmentofmotionsicknesssusceptibilitybasedonmachinelearning AT wanghan multidimensionalandobjectiveassessmentofmotionsicknesssusceptibilitybasedonmachinelearning AT wangxiaocheng multidimensionalandobjectiveassessmentofmotionsicknesssusceptibilitybasedonmachinelearning |