Cargando…

Exploring the mechanisms of action of Cordyceps sinensis for the treatment of depression using network pharmacology and molecular docking

BACKGROUND: Depression is the most common type of psychological disorder, with continuous, prolonged, and persistent bad moods as the main clinical feature. Cordyceps sinensis is a complex consisting of the ascospores and bodies of insect larvae from the Hepialidae family that have been parasitized...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Xingfang, Wang, Mengyuan, Qiao, Yajun, Shan, Zhongshu, Yang, Mengmeng, Li, Guoqiang, Xiao, Yuancan, Wei, Lixin, Bi, Hongtao, Gao, Tingting
Formato: Online Artículo Texto
Lenguaje:English
Publicado: AME Publishing Company 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9011256/
https://www.ncbi.nlm.nih.gov/pubmed/35434037
http://dx.doi.org/10.21037/atm-22-762
Descripción
Sumario:BACKGROUND: Depression is the most common type of psychological disorder, with continuous, prolonged, and persistent bad moods as the main clinical feature. Cordyceps sinensis is a complex consisting of the ascospores and bodies of insect larvae from the Hepialidae family that have been parasitized by Cordyceps sinensis militaris. Previous studies have reported that this herb has antidepressant activity. The present study used network pharmacology and molecular docking techniques to investigate the potential antidepressant mechanisms of Cordyceps sinensis. METHODS: The active ingredients of Cordyceps sinensis were identified using the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and the potential targets were predicted using the PharmMapper platform. The GeneCards database was then used to obtain sub-targets for depression. Common targets were screened and enrichment analyses were performed using the Metascape platform. Finally, the relationship between the active ingredients and the core targets were verified by molecular docking. RESULTS: Through network pharmacological analysis, 7 active ingredients in Cordyceps sinensis and 41 common targets of drugs and diseases were identified. The active ingredients of Cordyceps sinensis may exert antidepressant effects by acting on important targets such as catalase (CAT), CREB binding protein (CREBBP), epidermal growth factor (EGF), and E1A binding protein P300 (EP300), and by modulating the signaling pathways in which these targets are involved. Subsequently, the core targets were docked to the active ingredients and good binding was observed. CONCLUSIONS: The active ingredients of Cordyceps sinensis may exert antidepressant effects by regulating the CREB binding protein and anti-oxidative stress effects. The foxo signaling pathway (hsa04068), hypoxia-inducible factor 1 (HIF-1) signaling pathway (hsa04066), and Huntington’s disease (hsa05016) may be involved in the underlying mechanisms of Cordyceps sinensis. The joint application of network pharmacology and molecular docking provides a new approach to study the mechanisms of action of traditional Chinese medicine. Cordyceps sinensis may play an important role in the future treatment of patients with depression.