Cargando…

Quantitative assessment of renal damage in rhesus monkeys with diabetic nephropathy using contrast-enhanced ultrasound

BACKGROUND: Diabetic nephropathy (DN) is a common chronic microvascular complication of diabetes. Noninvasive diagnosis of DN is difficult. Contrast-enhanced ultrasound (CEUS), as a functional imaging method, provides noninvasive real-time images and quantitative assessment of renal microvascular pe...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Hong, An, Xingxing, Lu, Yanrong, Ling, Wenwu, Peng, Yulan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: AME Publishing Company 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9011263/
https://www.ncbi.nlm.nih.gov/pubmed/35434018
http://dx.doi.org/10.21037/atm-22-946
Descripción
Sumario:BACKGROUND: Diabetic nephropathy (DN) is a common chronic microvascular complication of diabetes. Noninvasive diagnosis of DN is difficult. Contrast-enhanced ultrasound (CEUS), as a functional imaging method, provides noninvasive real-time images and quantitative assessment of renal microvascular perfusion. This study investigated the efficacy of CEUS in discriminating between DN and normal kidneys in rhesus monkeys. METHODS: A total of 12 male rhesus monkeys (DN model group, n=6; normal control group, n=6) were included in this study. The following parameters were evaluated: (I) blood biochemistry; (II) CEUS; and (III) ultrasound-guided renal biopsy. RESULTS: Pathological and biochemical results showed that all subjects in the lesion group had serious renal damage. There were significant differences in the CEUS parameters, including the area under the curve, the time from peak to one half, and peak intensity between the lesion group and the normal group. The time to peak was slightly delayed in the lesion group. There was no significant difference in the rise time between the two groups. CONCLUSIONS: Although the precise CEUS parameters that may best predict renal damage still require systematic evaluation, the results of these animal studies suggest that CEUS may be used as a supplemental tool in diagnosing renal damage in rhesus monkeys with DN. We hope these findings can provide insights for the application of CEUS in DN.