Cargando…

Synthetic Mechanisms in the Formation of SnTe Nanocrystals

[Image: see text] Infrared active colloidal semiconducting nanocrystals (NCs) are important for applications including photodetectors and photovoltaics. While much research has been conducted on nanocrystalline materials such as the Pb and Hg chalcogenides, less toxic alternatives such as SnTe have...

Descripción completa

Detalles Bibliográficos
Autores principales: O’Neill, Sean W., Krauss, Todd D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9011400/
https://www.ncbi.nlm.nih.gov/pubmed/35348326
http://dx.doi.org/10.1021/jacs.1c11697
Descripción
Sumario:[Image: see text] Infrared active colloidal semiconducting nanocrystals (NCs) are important for applications including photodetectors and photovoltaics. While much research has been conducted on nanocrystalline materials such as the Pb and Hg chalcogenides, less toxic alternatives such as SnTe have been far less explored. Previous synthetic work on SnTe NCs have characterized photophysical properties of the nanoparticles. This study focuses on understanding the fundamental chemical mechanisms involved in SnTe NC formation, with the aim to improve synthetic outcomes. The solvent oleylamine, common to all SnTe syntheses, is found to form a highly reactive, heteroleptic Sn-oleylamine precursor that is the primary molecular Sn species initiating NC formation and growth. Further, the capping ligand oleic acid (OA) reacts with this amine to produce tin oxide (SnO(x)), facilitating the formation of an NC SnO(x) shell. Therefore, the use of OA during synthesis is counterproductive to the formation of stoichiometric SnTe nanoparticles. The knowledge of chemical reaction mechanisms creates a foundation for the production of high-quality, unoxidized, and stoichiometric SnTe NCs.