Cargando…
Anisotropic Three-Dimensional Quantum Hall Effect and Magnetotransport in Mesoscopic Weyl Semimetals
[Image: see text] Weyl semimetals are emerging to become a new class of quantum-material platform for various novel phenomena. Especially, the Weyl orbit made from surface Fermi arcs and bulk relativistic states is expected to play a key role in magnetotransport, leading even to a three-dimensional...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9011404/ https://www.ncbi.nlm.nih.gov/pubmed/35332773 http://dx.doi.org/10.1021/acs.nanolett.2c00296 |
Sumario: | [Image: see text] Weyl semimetals are emerging to become a new class of quantum-material platform for various novel phenomena. Especially, the Weyl orbit made from surface Fermi arcs and bulk relativistic states is expected to play a key role in magnetotransport, leading even to a three-dimensional quantum Hall effect (QHE). It is experimentally and theoretically important although yet unclear whether it bears essentially the same phenomenon as the conventional two-dimensional QHE. We discover an unconventional fully three-dimensional anisotropy in the quantum transport under a magnetic field. Strong suppression and even disappearance of the QHE occur when the Hall-bar current is rotated away from being transverse to parallel with respect to the Weyl point alignment, which is attributed to a peculiar absence of conventional bulk-boundary correspondence. Besides, transport along the magnetic field can exhibit a remarkable reversal from negative to positive magnetoresistance. These results establish the uniqueness of this QHE system as a novel three-dimensional quantum matter. |
---|