Cargando…
Enhancing predictions of antimicrobial resistance of pathogens by expanding the potential resistance gene repertoire using a pan-genome-based feature selection approach
BACKGROUND: Predicting which pathogens might exhibit antimicrobial resistance (AMR) based on genomics data is one of the promising ways to swiftly and precisely identify AMR pathogens. Currently, the most widely used genomics approach is through identifying known AMR genes from genomic information i...
Autores principales: | Yang, Ming-Ren, Wu, Yu-Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9011928/ https://www.ncbi.nlm.nih.gov/pubmed/35428201 http://dx.doi.org/10.1186/s12859-022-04666-2 |
Ejemplares similares
-
Antimicrobial resistance genetic factor identification from whole-genome sequence data using deep feature selection
por: Shi, Jinhong, et al.
Publicado: (2019) -
MGS2AMR: a gene-centric mining of metagenomic sequencing data for pathogens and their antimicrobial resistance profile
por: Van Camp, Pieter-Jan, et al.
Publicado: (2023) -
A Cross-Validated Feature Selection (CVFS) approach for extracting the most parsimonious feature sets and discovering potential antimicrobial resistance (AMR) biomarkers
por: Yang, Ming-Ren, et al.
Publicado: (2022) -
A Jackknife and Voting Classifier Approach to Feature Selection and Classification
por: Taylor, Sandra L., et al.
Publicado: (2011) -
Mathematical morphology-based approach to the enhancement of morphological features in medical images
por: Kimori, Yoshitaka
Publicado: (2011)