Cargando…
Deep clustering of small molecules at large-scale via variational autoencoder embedding and K-means
BACKGROUND: Converting molecules into computer-interpretable features with rich molecular information is a core problem of data-driven machine learning applications in chemical and drug-related tasks. Generally speaking, there are global and local features to represent a given molecule. As most algo...
Autores principales: | Hadipour, Hamid, Liu, Chengyou, Davis, Rebecca, Cardona, Silvia T., Hu, Pingzhao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9011935/ https://www.ncbi.nlm.nih.gov/pubmed/35428173 http://dx.doi.org/10.1186/s12859-022-04667-1 |
Ejemplares similares
-
Deep Multivariate Time Series Embedding Clustering via Attentive-Gated Autoencoder
por: Ienco, Dino, et al.
Publicado: (2020) -
Association Analysis of Deep Genomic Features Extracted by Denoising Autoencoders in Breast Cancer
por: Liu, Qian, et al.
Publicado: (2019) -
Deep learning-driven prediction of drug mechanism of action from large-scale chemical-genetic interaction profiles
por: Liu, Chengyou, et al.
Publicado: (2022) -
ABT-MPNN: an atom-bond transformer-based message-passing neural network for molecular property prediction
por: Liu, Chengyou, et al.
Publicado: (2023) -
Learning Subject-Generalized Topographical EEG Embeddings Using Deep Variational Autoencoders and Domain-Adversarial Regularization
por: Hagad, Juan Lorenzo, et al.
Publicado: (2021)