Cargando…
Explainable multiview framework for dissecting spatial relationships from highly multiplexed data
The advancement of highly multiplexed spatial technologies requires scalable methods that can leverage spatial information. We present MISTy, a flexible, scalable, and explainable machine learning framework for extracting relationships from any spatial omics data, from dozens to thousands of measure...
Autores principales: | Tanevski, Jovan, Flores, Ricardo Omar Ramirez, Gabor, Attila, Schapiro, Denis, Saez-Rodriguez, Julio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9011939/ https://www.ncbi.nlm.nih.gov/pubmed/35422018 http://dx.doi.org/10.1186/s13059-022-02663-5 |
Ejemplares similares
-
Multiview spatial compounding using lens-based photoacoustic imaging system()
por: Francis, Kalloor Joseph, et al.
Publicado: (2019) -
Modeling Cell-Cell Interactions from Spatial Molecular Data with Spatial Variance Component Analysis
por: Arnol, Damien, et al.
Publicado: (2019) -
Cooperative learning for multiview analysis
por: Ding, Daisy Yi, et al.
Publicado: (2022) -
Spatially multiplexed RNA in situ hybridization to reveal tumor heterogeneity
por: Voith von Voithenberg, Lena, et al.
Publicado: (2020) -
Encoding and Multiplexing of 2D Images with Orbital Angular Momentum Beams and the Use for Multiview Color Displays
por: Chu, J., et al.
Publicado: (2019)