Cargando…
Multi-label annotation of text reports from computed tomography of the chest, abdomen, and pelvis using deep learning
BACKGROUND: There is progress to be made in building artificially intelligent systems to detect abnormalities that are not only accurate but can handle the true breadth of findings that radiologists encounter in body (chest, abdomen, and pelvis) computed tomography (CT). Currently, the major bottlen...
Autores principales: | D’Anniballe, Vincent M., Tushar, Fakrul Islam, Faryna, Khrystyna, Han, Songyue, Mazurowski, Maciej A., Rubin, Geoffrey D., Lo, Joseph Y. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9011942/ https://www.ncbi.nlm.nih.gov/pubmed/35428335 http://dx.doi.org/10.1186/s12911-022-01843-4 |
Ejemplares similares
-
Towards Poly(vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene)-Based Soft Actuators: Films and Electrospun Aligned Nanofiber Mats
por: D’Anniballe, Riccardo, et al.
Publicado: (2021) -
Radiation injury: imaging findings in the chest, abdomen and pelvis after therapeutic radiation
por: Iyer, R, et al.
Publicado: (2006) -
The Significance of Pains in the Pelvis and Abdomen
por: Crowe, W. A.
Publicado: (1907) -
RM de abdomen y pelvis
Publicado: (2005) -
Diagnostic reference level quantities for adult chest and abdomen-pelvis CT examinations: correlation with organ doses
por: Costa, Paulo Roberto, et al.
Publicado: (2023)