Cargando…

Derivation and validation of a nomogram for predicting nonventilator hospital-acquired pneumonia among older hospitalized patients

BACKGROUND: Currently, there is no effective tool for predicting the risk of nonventilator hospital-acquired pneumonia (NV-HAP) in older hospitalized patients. The current study aimed to develop and validate a simple nomogram and a dynamic web-based calculator for predicting the risk of NV-HAP among...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Zhihui, Xu, Ziqin, Wu, Hongmei, Gao, Shengchun, Wang, Haihong, Jiang, Jiaru, Li, Xiuyang, Chen, Le
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9011946/
https://www.ncbi.nlm.nih.gov/pubmed/35428276
http://dx.doi.org/10.1186/s12890-022-01941-z
Descripción
Sumario:BACKGROUND: Currently, there is no effective tool for predicting the risk of nonventilator hospital-acquired pneumonia (NV-HAP) in older hospitalized patients. The current study aimed to develop and validate a simple nomogram and a dynamic web-based calculator for predicting the risk of NV-HAP among older hospitalized patients. METHODS: A retrospective evaluation was conducted on 15,420 consecutive older hospitalized patients admitted to a tertiary hospital in China between September 2017 and June 2020. The patients were randomly divided into training (n = 10,796) and validation (n = 4624) cohorts at a ratio of 7:3. Predictors of NV-HAP were screened using the least absolute shrinkage and selection operator method and multivariate logistic regression. The identified predictors were integrated to construct a nomogram using R software. Furthermore, the optimum cut-off value for the clinical application of the model was calculated using the Youden index. The concordance index (C-index), GiViTI calibration belts, and decision curve were analysed to validate the discrimination, calibration, and clinical utility of the model, respectively. Finally, a dynamic web-based calculator was developed to facilitate utilization of the nomogram. RESULTS: Predictors included in the nomogram were the Charlson comorbidity index, NRS-2002, enteral tube feeding, Barthel Index, use of sedatives, use of NSAIDs, use of inhaled steroids, and "time at risk". The C-index of the nomogram for the training and validation cohorts was 0.813 and 0.821, respectively. The 95% CI region of the GiViTI calibration belt in the training (P = 0.694) and validation (P = 0.614) cohorts did not cross the diagonal bisector line, suggesting that the prediction model had good discrimination and calibration. Furthermore, the optimal cut-off values for the training and validation cohorts were 1.58 and 1.74%, respectively. Analysis of the decision curve showed that the nomogram had good clinical value when the threshold likelihood was between 0 and 49%. CONCLUSION: The developed nomogram can be used to predict the risk of NV-HAP among older hospitalized patients. It can, therefore, help healthcare providers initiate targeted medical interventions in a timely manner for high-risk groups. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12890-022-01941-z.