Cargando…
Benchmarking missing-values approaches for predictive models on health databases
BACKGROUND: As databases grow larger, it becomes harder to fully control their collection, and they frequently come with missing values. These large databases are well suited to train machine learning models, e.g., for forecasting or to extract biomarkers in biomedical settings. Such predictive appr...
Autores principales: | Perez-Lebel, Alexandre, Varoquaux, Gaël, Le Morvan, Marine, Josse, Julie, Poline, Jean-Baptiste |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9012100/ https://www.ncbi.nlm.nih.gov/pubmed/35426912 http://dx.doi.org/10.1093/gigascience/giac013 |
Ejemplares similares
-
Preventing dataset shift from breaking machine-learning biomarkers
por: Dockès, Jérôme, et al.
Publicado: (2021) -
Which fMRI clustering gives good brain parcellations?
por: Thirion, Bertrand, et al.
Publicado: (2014) -
Atlases of cognition with large-scale human brain mapping
por: Varoquaux, Gaël, et al.
Publicado: (2018) -
Distinct alterations in Parkinson's medication-state and disease-state connectivity
por: Ng, Bernard, et al.
Publicado: (2017) -
PyXNAT: XNAT in Python
por: Schwartz, Yannick, et al.
Publicado: (2012)