Cargando…
Establishing an interdisciplinary research team for cardio-oncology artificial intelligence informatics precision and health equity
STUDY OBJECTIVE: A multi-institutional interdisciplinary team was created to develop a research group focused on leveraging artificial intelligence and informatics for cardio-oncology patients. Cardio-oncology is an emerging medical field dedicated to prevention, screening, and management of adverse...
Autores principales: | , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9012235/ https://www.ncbi.nlm.nih.gov/pubmed/35434676 http://dx.doi.org/10.1016/j.ahjo.2022.100094 |
Sumario: | STUDY OBJECTIVE: A multi-institutional interdisciplinary team was created to develop a research group focused on leveraging artificial intelligence and informatics for cardio-oncology patients. Cardio-oncology is an emerging medical field dedicated to prevention, screening, and management of adverse cardiovascular effects of cancer/ cancer therapies. Cardiovascular disease is a leading cause of death in cancer survivors. Cardiovascular risk in these patients is higher than in the general population. However, prediction and prevention of adverse cardiovascular events in individuals with a history of cancer/cancer treatment is challenging. Thus, establishing an interdisciplinary team to create cardiovascular risk stratification clinical decision aids for integration into electronic health records for oncology patients was considered crucial. DESIGN/SETTING/PARTICIPANTS: Core team members from the Medical College of Wisconsin (MCW), University of Wisconsin-Milwaukee (UWM), and Milwaukee School of Engineering (MSOE), and additional members from Cleveland Clinic, Mayo Clinic, and other institutions have joined forces to apply high-performance computing in cardio-oncology. RESULTS: The team is comprised of clinicians and researchers from relevant complementary and synergistic fields relevant to this work. The team has built an epidemiological cohort of ~5000 cancer survivors that will serve as a database for interdisciplinary multi-institutional artificial intelligence projects. CONCLUSION: Lessons learned from establishing this team, as well as initial findings from the epidemiology cohort, are presented. Barriers have been broken down to form a multi-institutional interdisciplinary team for health informatics research in cardio-oncology. A database of cancer survivors has been created collaboratively by the team and provides initial insight into cardiovascular outcomes and comorbidities in this population. |
---|