Cargando…
An in-plane photoelectric effect in two-dimensional electron systems for terahertz detection
Many mid- and far-infrared semiconductor photodetectors rely on a photonic response, when the photon energy is large enough to excite and extract electrons due to optical transitions. Toward the terahertz range with photon energies of a few milli–electron volts, classical mechanisms are used instead...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9012455/ https://www.ncbi.nlm.nih.gov/pubmed/35427162 http://dx.doi.org/10.1126/sciadv.abi8398 |
_version_ | 1784687800375836672 |
---|---|
author | Michailow, Wladislaw Spencer, Peter Almond, Nikita W. Kindness, Stephen J. Wallis, Robert Mitchell, Thomas A. Degl’Innocenti, Riccardo Mikhailov, Sergey A. Beere, Harvey E. Ritchie, David A. |
author_facet | Michailow, Wladislaw Spencer, Peter Almond, Nikita W. Kindness, Stephen J. Wallis, Robert Mitchell, Thomas A. Degl’Innocenti, Riccardo Mikhailov, Sergey A. Beere, Harvey E. Ritchie, David A. |
author_sort | Michailow, Wladislaw |
collection | PubMed |
description | Many mid- and far-infrared semiconductor photodetectors rely on a photonic response, when the photon energy is large enough to excite and extract electrons due to optical transitions. Toward the terahertz range with photon energies of a few milli–electron volts, classical mechanisms are used instead. This is the case in two-dimensional electron systems, where terahertz detection is dominated by plasmonic mixing and by scattering-based thermal phenomena. Here, we report on the observation of a quantum, collision-free phenomenon that yields a giant photoresponse at terahertz frequencies (1.9 THz), more than 10-fold as large as expected from plasmonic mixing. We artificially create an electrically tunable potential step within a degenerate two-dimensional electron gas. When exposed to terahertz radiation, electrons absorb photons and generate a large photocurrent under zero source-drain bias. The observed phenomenon, which we call the “in-plane photoelectric effect,” provides an opportunity for efficient direct detection across the entire terahertz range. |
format | Online Article Text |
id | pubmed-9012455 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Association for the Advancement of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-90124552022-04-26 An in-plane photoelectric effect in two-dimensional electron systems for terahertz detection Michailow, Wladislaw Spencer, Peter Almond, Nikita W. Kindness, Stephen J. Wallis, Robert Mitchell, Thomas A. Degl’Innocenti, Riccardo Mikhailov, Sergey A. Beere, Harvey E. Ritchie, David A. Sci Adv Physical and Materials Sciences Many mid- and far-infrared semiconductor photodetectors rely on a photonic response, when the photon energy is large enough to excite and extract electrons due to optical transitions. Toward the terahertz range with photon energies of a few milli–electron volts, classical mechanisms are used instead. This is the case in two-dimensional electron systems, where terahertz detection is dominated by plasmonic mixing and by scattering-based thermal phenomena. Here, we report on the observation of a quantum, collision-free phenomenon that yields a giant photoresponse at terahertz frequencies (1.9 THz), more than 10-fold as large as expected from plasmonic mixing. We artificially create an electrically tunable potential step within a degenerate two-dimensional electron gas. When exposed to terahertz radiation, electrons absorb photons and generate a large photocurrent under zero source-drain bias. The observed phenomenon, which we call the “in-plane photoelectric effect,” provides an opportunity for efficient direct detection across the entire terahertz range. American Association for the Advancement of Science 2022-04-15 /pmc/articles/PMC9012455/ /pubmed/35427162 http://dx.doi.org/10.1126/sciadv.abi8398 Text en Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). https://creativecommons.org/licenses/by-nc/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (https://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited. |
spellingShingle | Physical and Materials Sciences Michailow, Wladislaw Spencer, Peter Almond, Nikita W. Kindness, Stephen J. Wallis, Robert Mitchell, Thomas A. Degl’Innocenti, Riccardo Mikhailov, Sergey A. Beere, Harvey E. Ritchie, David A. An in-plane photoelectric effect in two-dimensional electron systems for terahertz detection |
title | An in-plane photoelectric effect in two-dimensional electron systems for terahertz detection |
title_full | An in-plane photoelectric effect in two-dimensional electron systems for terahertz detection |
title_fullStr | An in-plane photoelectric effect in two-dimensional electron systems for terahertz detection |
title_full_unstemmed | An in-plane photoelectric effect in two-dimensional electron systems for terahertz detection |
title_short | An in-plane photoelectric effect in two-dimensional electron systems for terahertz detection |
title_sort | in-plane photoelectric effect in two-dimensional electron systems for terahertz detection |
topic | Physical and Materials Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9012455/ https://www.ncbi.nlm.nih.gov/pubmed/35427162 http://dx.doi.org/10.1126/sciadv.abi8398 |
work_keys_str_mv | AT michailowwladislaw aninplanephotoelectriceffectintwodimensionalelectronsystemsforterahertzdetection AT spencerpeter aninplanephotoelectriceffectintwodimensionalelectronsystemsforterahertzdetection AT almondnikitaw aninplanephotoelectriceffectintwodimensionalelectronsystemsforterahertzdetection AT kindnessstephenj aninplanephotoelectriceffectintwodimensionalelectronsystemsforterahertzdetection AT wallisrobert aninplanephotoelectriceffectintwodimensionalelectronsystemsforterahertzdetection AT mitchellthomasa aninplanephotoelectriceffectintwodimensionalelectronsystemsforterahertzdetection AT deglinnocentiriccardo aninplanephotoelectriceffectintwodimensionalelectronsystemsforterahertzdetection AT mikhailovsergeya aninplanephotoelectriceffectintwodimensionalelectronsystemsforterahertzdetection AT beereharveye aninplanephotoelectriceffectintwodimensionalelectronsystemsforterahertzdetection AT ritchiedavida aninplanephotoelectriceffectintwodimensionalelectronsystemsforterahertzdetection AT michailowwladislaw inplanephotoelectriceffectintwodimensionalelectronsystemsforterahertzdetection AT spencerpeter inplanephotoelectriceffectintwodimensionalelectronsystemsforterahertzdetection AT almondnikitaw inplanephotoelectriceffectintwodimensionalelectronsystemsforterahertzdetection AT kindnessstephenj inplanephotoelectriceffectintwodimensionalelectronsystemsforterahertzdetection AT wallisrobert inplanephotoelectriceffectintwodimensionalelectronsystemsforterahertzdetection AT mitchellthomasa inplanephotoelectriceffectintwodimensionalelectronsystemsforterahertzdetection AT deglinnocentiriccardo inplanephotoelectriceffectintwodimensionalelectronsystemsforterahertzdetection AT mikhailovsergeya inplanephotoelectriceffectintwodimensionalelectronsystemsforterahertzdetection AT beereharveye inplanephotoelectriceffectintwodimensionalelectronsystemsforterahertzdetection AT ritchiedavida inplanephotoelectriceffectintwodimensionalelectronsystemsforterahertzdetection |