Cargando…

An in-plane photoelectric effect in two-dimensional electron systems for terahertz detection

Many mid- and far-infrared semiconductor photodetectors rely on a photonic response, when the photon energy is large enough to excite and extract electrons due to optical transitions. Toward the terahertz range with photon energies of a few milli–electron volts, classical mechanisms are used instead...

Descripción completa

Detalles Bibliográficos
Autores principales: Michailow, Wladislaw, Spencer, Peter, Almond, Nikita W., Kindness, Stephen J., Wallis, Robert, Mitchell, Thomas A., Degl’Innocenti, Riccardo, Mikhailov, Sergey A., Beere, Harvey E., Ritchie, David A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9012455/
https://www.ncbi.nlm.nih.gov/pubmed/35427162
http://dx.doi.org/10.1126/sciadv.abi8398
_version_ 1784687800375836672
author Michailow, Wladislaw
Spencer, Peter
Almond, Nikita W.
Kindness, Stephen J.
Wallis, Robert
Mitchell, Thomas A.
Degl’Innocenti, Riccardo
Mikhailov, Sergey A.
Beere, Harvey E.
Ritchie, David A.
author_facet Michailow, Wladislaw
Spencer, Peter
Almond, Nikita W.
Kindness, Stephen J.
Wallis, Robert
Mitchell, Thomas A.
Degl’Innocenti, Riccardo
Mikhailov, Sergey A.
Beere, Harvey E.
Ritchie, David A.
author_sort Michailow, Wladislaw
collection PubMed
description Many mid- and far-infrared semiconductor photodetectors rely on a photonic response, when the photon energy is large enough to excite and extract electrons due to optical transitions. Toward the terahertz range with photon energies of a few milli–electron volts, classical mechanisms are used instead. This is the case in two-dimensional electron systems, where terahertz detection is dominated by plasmonic mixing and by scattering-based thermal phenomena. Here, we report on the observation of a quantum, collision-free phenomenon that yields a giant photoresponse at terahertz frequencies (1.9 THz), more than 10-fold as large as expected from plasmonic mixing. We artificially create an electrically tunable potential step within a degenerate two-dimensional electron gas. When exposed to terahertz radiation, electrons absorb photons and generate a large photocurrent under zero source-drain bias. The observed phenomenon, which we call the “in-plane photoelectric effect,” provides an opportunity for efficient direct detection across the entire terahertz range.
format Online
Article
Text
id pubmed-9012455
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-90124552022-04-26 An in-plane photoelectric effect in two-dimensional electron systems for terahertz detection Michailow, Wladislaw Spencer, Peter Almond, Nikita W. Kindness, Stephen J. Wallis, Robert Mitchell, Thomas A. Degl’Innocenti, Riccardo Mikhailov, Sergey A. Beere, Harvey E. Ritchie, David A. Sci Adv Physical and Materials Sciences Many mid- and far-infrared semiconductor photodetectors rely on a photonic response, when the photon energy is large enough to excite and extract electrons due to optical transitions. Toward the terahertz range with photon energies of a few milli–electron volts, classical mechanisms are used instead. This is the case in two-dimensional electron systems, where terahertz detection is dominated by plasmonic mixing and by scattering-based thermal phenomena. Here, we report on the observation of a quantum, collision-free phenomenon that yields a giant photoresponse at terahertz frequencies (1.9 THz), more than 10-fold as large as expected from plasmonic mixing. We artificially create an electrically tunable potential step within a degenerate two-dimensional electron gas. When exposed to terahertz radiation, electrons absorb photons and generate a large photocurrent under zero source-drain bias. The observed phenomenon, which we call the “in-plane photoelectric effect,” provides an opportunity for efficient direct detection across the entire terahertz range. American Association for the Advancement of Science 2022-04-15 /pmc/articles/PMC9012455/ /pubmed/35427162 http://dx.doi.org/10.1126/sciadv.abi8398 Text en Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). https://creativecommons.org/licenses/by-nc/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (https://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.
spellingShingle Physical and Materials Sciences
Michailow, Wladislaw
Spencer, Peter
Almond, Nikita W.
Kindness, Stephen J.
Wallis, Robert
Mitchell, Thomas A.
Degl’Innocenti, Riccardo
Mikhailov, Sergey A.
Beere, Harvey E.
Ritchie, David A.
An in-plane photoelectric effect in two-dimensional electron systems for terahertz detection
title An in-plane photoelectric effect in two-dimensional electron systems for terahertz detection
title_full An in-plane photoelectric effect in two-dimensional electron systems for terahertz detection
title_fullStr An in-plane photoelectric effect in two-dimensional electron systems for terahertz detection
title_full_unstemmed An in-plane photoelectric effect in two-dimensional electron systems for terahertz detection
title_short An in-plane photoelectric effect in two-dimensional electron systems for terahertz detection
title_sort in-plane photoelectric effect in two-dimensional electron systems for terahertz detection
topic Physical and Materials Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9012455/
https://www.ncbi.nlm.nih.gov/pubmed/35427162
http://dx.doi.org/10.1126/sciadv.abi8398
work_keys_str_mv AT michailowwladislaw aninplanephotoelectriceffectintwodimensionalelectronsystemsforterahertzdetection
AT spencerpeter aninplanephotoelectriceffectintwodimensionalelectronsystemsforterahertzdetection
AT almondnikitaw aninplanephotoelectriceffectintwodimensionalelectronsystemsforterahertzdetection
AT kindnessstephenj aninplanephotoelectriceffectintwodimensionalelectronsystemsforterahertzdetection
AT wallisrobert aninplanephotoelectriceffectintwodimensionalelectronsystemsforterahertzdetection
AT mitchellthomasa aninplanephotoelectriceffectintwodimensionalelectronsystemsforterahertzdetection
AT deglinnocentiriccardo aninplanephotoelectriceffectintwodimensionalelectronsystemsforterahertzdetection
AT mikhailovsergeya aninplanephotoelectriceffectintwodimensionalelectronsystemsforterahertzdetection
AT beereharveye aninplanephotoelectriceffectintwodimensionalelectronsystemsforterahertzdetection
AT ritchiedavida aninplanephotoelectriceffectintwodimensionalelectronsystemsforterahertzdetection
AT michailowwladislaw inplanephotoelectriceffectintwodimensionalelectronsystemsforterahertzdetection
AT spencerpeter inplanephotoelectriceffectintwodimensionalelectronsystemsforterahertzdetection
AT almondnikitaw inplanephotoelectriceffectintwodimensionalelectronsystemsforterahertzdetection
AT kindnessstephenj inplanephotoelectriceffectintwodimensionalelectronsystemsforterahertzdetection
AT wallisrobert inplanephotoelectriceffectintwodimensionalelectronsystemsforterahertzdetection
AT mitchellthomasa inplanephotoelectriceffectintwodimensionalelectronsystemsforterahertzdetection
AT deglinnocentiriccardo inplanephotoelectriceffectintwodimensionalelectronsystemsforterahertzdetection
AT mikhailovsergeya inplanephotoelectriceffectintwodimensionalelectronsystemsforterahertzdetection
AT beereharveye inplanephotoelectriceffectintwodimensionalelectronsystemsforterahertzdetection
AT ritchiedavida inplanephotoelectriceffectintwodimensionalelectronsystemsforterahertzdetection