Cargando…
Scaling and Disagreements: Bias, Noise, and Ambiguity
Crowdsourced data are often rife with disagreement, either because of genuine item ambiguity, overlapping labels, subjectivity, or annotator error. Hence, a variety of methods have been developed for learning from data containing disagreement. One of the observations emerging from this work is that...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9012579/ https://www.ncbi.nlm.nih.gov/pubmed/35434607 http://dx.doi.org/10.3389/frai.2022.818451 |
Sumario: | Crowdsourced data are often rife with disagreement, either because of genuine item ambiguity, overlapping labels, subjectivity, or annotator error. Hence, a variety of methods have been developed for learning from data containing disagreement. One of the observations emerging from this work is that different methods appear to work best depending on characteristics of the dataset such as the level of noise. In this paper, we investigate the use of an approach developed to estimate noise, temperature scaling, in learning from data containing disagreements. We find that temperature scaling works with data in which the disagreements are the result of label overlap, but not with data in which the disagreements are due to annotator bias, as in, e.g., subjective tasks such as labeling an item as offensive or not. We also find that disagreements due to ambiguity do not fit perfectly either category. |
---|