Cargando…
Scaling and Disagreements: Bias, Noise, and Ambiguity
Crowdsourced data are often rife with disagreement, either because of genuine item ambiguity, overlapping labels, subjectivity, or annotator error. Hence, a variety of methods have been developed for learning from data containing disagreement. One of the observations emerging from this work is that...
Autores principales: | Uma, Alexandra, Almanea, Dina, Poesio, Massimo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9012579/ https://www.ncbi.nlm.nih.gov/pubmed/35434607 http://dx.doi.org/10.3389/frai.2022.818451 |
Ejemplares similares
-
Exploring the Representations of Individual Entities in the Brain Combining EEG and Distributional Semantics
por: Bruera, Andrea, et al.
Publicado: (2022) -
Confusion2Vec: towards enriching vector space word representations with representational ambiguities
por: Gurunath Shivakumar, Prashanth, et al.
Publicado: (2019) -
In Search of Ambiguity: A Three-Stage Workflow Design to Clarify Annotation Guidelines for Crowd Workers
por: Pradhan, Vivek Krishna, et al.
Publicado: (2022) -
On solving textual ambiguities and semantic vagueness in MRC based question answering using generative pre-trained transformers
por: Ahmed, Muzamil, et al.
Publicado: (2023) -
Editorial: Bias, Subjectivity and Perspectives in Natural Language Processing
por: Basile, Valerio, et al.
Publicado: (2022)