Cargando…
Identification of a Ferroptosis-Related Prognostic Gene PTGS2 Based on Risk Modeling and Immune Microenvironment of Early-Stage Cervical Cancer
BACKGROUND: Cervical cancer (CC) has long been a concern, as a gynecological cancer type of high-risk. At present, there are few studies on the early detection of CC at the genetic level. The breakthrough is to recognize CC patients tending to have a worse prognosis by checking the expression patter...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9012634/ https://www.ncbi.nlm.nih.gov/pubmed/35432535 http://dx.doi.org/10.1155/2022/3997562 |
_version_ | 1784687837687316480 |
---|---|
author | Zou, Chang Xu, Fangfang Shen, Jiacheng Xu, Shaohua |
author_facet | Zou, Chang Xu, Fangfang Shen, Jiacheng Xu, Shaohua |
author_sort | Zou, Chang |
collection | PubMed |
description | BACKGROUND: Cervical cancer (CC) has long been a concern, as a gynecological cancer type of high-risk. At present, there are few studies on the early detection of CC at the genetic level. The breakthrough is to recognize CC patients tending to have a worse prognosis by checking the expression pattern of ferroptosis-related genes, which enjoy a great potential of being applied to cancer treatment. METHODS: Data used in this study was obtained from a series of public online databases, integrated with ferroptosis-related gene collection stored from the FerrDb database and GeneCards database. The least absolute shrinkage and selection operator- (LASSO-) penalized analysis was taken for modeling, and before, univariate Cox regression analysis got done to shrink the candidates' range. Several analyses were made for the evaluation of the efficacy of the new model, based on CC patients' overall survival (OS). Tumor microenvironment- (TME-) related analyses were conducted by various algorithms on different populations, comprising CIBERSORT, ssGSEA, XCELL, etc. Nonnegative matrix factorization (NMF) clustering got applied to find that ferroptosis-marker genes affect prognosis more than “driver” and “suppressor”. Hub-gene PTGS2 was screened out by protein-protein interaction analysis and real-time qPCR after ferroptosis induction, and ELISA was conducted for further verification on the correlation between ferroptosis and M1 polarization. RESULTS: The twenty-five ferroptosis-related genes model can estimate the prognosis of patients independently of other clinical factors, and the low-risk score group shows higher expression of immune-enhancing cells, noteworthily for M1 macrophages. It is experimentally validated that the M1 marker TNF-α significantly increased after coculturing M1 macrophages and SiHa cells processed with ferroptosis inductor before. The key gene to the model, PTGS2, presented to be a risk factor in cervical cancer, and its low-expression group has stronger immune activity and higher tumor mutation burden, with the significantly highly mutated gene TENM2 in it showing high drug sensitivity and neoantigen for patients with its mutant-type. Meanwhile, it influences macrophage polarization. CONCLUSION: Prognosis of early-stage cervical cancer patients can be exactly predicted on ferroptosis-related genes. Among model genes, PTGS2 may have a major impact by affecting macrophage polarization and mutation effects. |
format | Online Article Text |
id | pubmed-9012634 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-90126342022-04-16 Identification of a Ferroptosis-Related Prognostic Gene PTGS2 Based on Risk Modeling and Immune Microenvironment of Early-Stage Cervical Cancer Zou, Chang Xu, Fangfang Shen, Jiacheng Xu, Shaohua J Oncol Research Article BACKGROUND: Cervical cancer (CC) has long been a concern, as a gynecological cancer type of high-risk. At present, there are few studies on the early detection of CC at the genetic level. The breakthrough is to recognize CC patients tending to have a worse prognosis by checking the expression pattern of ferroptosis-related genes, which enjoy a great potential of being applied to cancer treatment. METHODS: Data used in this study was obtained from a series of public online databases, integrated with ferroptosis-related gene collection stored from the FerrDb database and GeneCards database. The least absolute shrinkage and selection operator- (LASSO-) penalized analysis was taken for modeling, and before, univariate Cox regression analysis got done to shrink the candidates' range. Several analyses were made for the evaluation of the efficacy of the new model, based on CC patients' overall survival (OS). Tumor microenvironment- (TME-) related analyses were conducted by various algorithms on different populations, comprising CIBERSORT, ssGSEA, XCELL, etc. Nonnegative matrix factorization (NMF) clustering got applied to find that ferroptosis-marker genes affect prognosis more than “driver” and “suppressor”. Hub-gene PTGS2 was screened out by protein-protein interaction analysis and real-time qPCR after ferroptosis induction, and ELISA was conducted for further verification on the correlation between ferroptosis and M1 polarization. RESULTS: The twenty-five ferroptosis-related genes model can estimate the prognosis of patients independently of other clinical factors, and the low-risk score group shows higher expression of immune-enhancing cells, noteworthily for M1 macrophages. It is experimentally validated that the M1 marker TNF-α significantly increased after coculturing M1 macrophages and SiHa cells processed with ferroptosis inductor before. The key gene to the model, PTGS2, presented to be a risk factor in cervical cancer, and its low-expression group has stronger immune activity and higher tumor mutation burden, with the significantly highly mutated gene TENM2 in it showing high drug sensitivity and neoantigen for patients with its mutant-type. Meanwhile, it influences macrophage polarization. CONCLUSION: Prognosis of early-stage cervical cancer patients can be exactly predicted on ferroptosis-related genes. Among model genes, PTGS2 may have a major impact by affecting macrophage polarization and mutation effects. Hindawi 2022-04-08 /pmc/articles/PMC9012634/ /pubmed/35432535 http://dx.doi.org/10.1155/2022/3997562 Text en Copyright © 2022 Chang Zou et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Zou, Chang Xu, Fangfang Shen, Jiacheng Xu, Shaohua Identification of a Ferroptosis-Related Prognostic Gene PTGS2 Based on Risk Modeling and Immune Microenvironment of Early-Stage Cervical Cancer |
title | Identification of a Ferroptosis-Related Prognostic Gene PTGS2 Based on Risk Modeling and Immune Microenvironment of Early-Stage Cervical Cancer |
title_full | Identification of a Ferroptosis-Related Prognostic Gene PTGS2 Based on Risk Modeling and Immune Microenvironment of Early-Stage Cervical Cancer |
title_fullStr | Identification of a Ferroptosis-Related Prognostic Gene PTGS2 Based on Risk Modeling and Immune Microenvironment of Early-Stage Cervical Cancer |
title_full_unstemmed | Identification of a Ferroptosis-Related Prognostic Gene PTGS2 Based on Risk Modeling and Immune Microenvironment of Early-Stage Cervical Cancer |
title_short | Identification of a Ferroptosis-Related Prognostic Gene PTGS2 Based on Risk Modeling and Immune Microenvironment of Early-Stage Cervical Cancer |
title_sort | identification of a ferroptosis-related prognostic gene ptgs2 based on risk modeling and immune microenvironment of early-stage cervical cancer |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9012634/ https://www.ncbi.nlm.nih.gov/pubmed/35432535 http://dx.doi.org/10.1155/2022/3997562 |
work_keys_str_mv | AT zouchang identificationofaferroptosisrelatedprognosticgeneptgs2basedonriskmodelingandimmunemicroenvironmentofearlystagecervicalcancer AT xufangfang identificationofaferroptosisrelatedprognosticgeneptgs2basedonriskmodelingandimmunemicroenvironmentofearlystagecervicalcancer AT shenjiacheng identificationofaferroptosisrelatedprognosticgeneptgs2basedonriskmodelingandimmunemicroenvironmentofearlystagecervicalcancer AT xushaohua identificationofaferroptosisrelatedprognosticgeneptgs2basedonriskmodelingandimmunemicroenvironmentofearlystagecervicalcancer |