Cargando…
Characterizing SPASM/twitch Domain-Containing Radical SAM Enzymes by EPR Spectroscopy
Owing to their importance, diversity and abundance of generated paramagnetic species, radical S-adenosylmethionine (rSAM) enzymes have become popular targets for electron paramagnetic resonance (EPR) spectroscopic studies. In contrast to prototypic single-domain and thus single-[4Fe–4S]-containing r...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Vienna
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9012708/ https://www.ncbi.nlm.nih.gov/pubmed/35509369 http://dx.doi.org/10.1007/s00723-021-01406-2 |
Sumario: | Owing to their importance, diversity and abundance of generated paramagnetic species, radical S-adenosylmethionine (rSAM) enzymes have become popular targets for electron paramagnetic resonance (EPR) spectroscopic studies. In contrast to prototypic single-domain and thus single-[4Fe–4S]-containing rSAM enzymes, there is a large subfamily of rSAM enzymes with multiple domains and one or two additional iron–sulfur cluster(s) called the SPASM/twitch domain-containing rSAM enzymes. EPR spectroscopy is a powerful tool that allows for the observation of the iron–sulfur clusters as well as potentially trappable paramagnetic reaction intermediates. Here, we review continuous-wave and pulse EPR spectroscopic studies of SPASM/twitch domain-containing rSAM enzymes. Among these enzymes, we will review in greater depth four well-studied enzymes, BtrN, MoaA, PqqE, and SuiB. Towards establishing a functional consensus of the additional architecture in these enzymes, we describe the commonalities between these enzymes as observed by EPR spectroscopy. |
---|