Cargando…
Zeros of Gaussian Weyl–Heisenberg Functions and Hyperuniformity of Charge
We study Gaussian random functions on the complex plane whose stochastics are invariant under the Weyl–Heisenberg group (twisted stationarity). The theory is modeled on translation invariant Gaussian entire functions, but allows for non-analytic examples, in which case winding numbers can be either...
Autores principales: | Haimi, Antti, Koliander, Günther, Romero, José Luis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9012733/ https://www.ncbi.nlm.nih.gov/pubmed/35510086 http://dx.doi.org/10.1007/s10955-022-02917-3 |
Ejemplares similares
-
Entanglement entropy and hyperuniformity of Ginibre and Weyl–Heisenberg ensembles
por: Abreu, Luís Daniel
Publicado: (2023) -
Harmonic Analysis in Phase Space and Finite Weyl–Heisenberg Ensembles
por: Abreu, Luís Daniel, et al.
Publicado: (2019) -
Hyperuniformity and anti-hyperuniformity in one-dimensional substitution tilings
por: Oğuz, Erdal C., et al.
Publicado: (2019) -
The Perfect Glass Paradigm: Disordered Hyperuniform Glasses Down to Absolute Zero
por: Zhang, G., et al.
Publicado: (2016) -
Simultaneous Momentum and Position Measurement and the Instrumental Weyl-Heisenberg Group
por: Jackson, Christopher S., et al.
Publicado: (2023)