Cargando…
Low-Rank Tucker-2 Model for Multi-Subject fMRI Data Decomposition With Spatial Sparsity Constraint
Tucker decomposition can provide an intuitive summary to understand brain function by decomposing multi-subject fMRI data into a core tensor and multiple factor matrices, and was mostly used to extract functional connectivity patterns across time/subjects using orthogonality constraints. However, th...
Autores principales: | Han, Yue, Lin, Qiu-Hua, Kuang, Li-Dan, Gong, Xiao-Feng, Cong, Fengyu, Wang, Yu-Ping, Calhoun, Vince D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9012952/ https://www.ncbi.nlm.nih.gov/pubmed/34694992 http://dx.doi.org/10.1109/TMI.2021.3122226 |
Ejemplares similares
-
Rank-Adaptive Tensor Completion Based on Tucker Decomposition
por: Liu, Siqi, et al.
Publicado: (2023) -
Constrained CPD of Complex-Valued Multi-Subject fMRI Data via Alternating Rank-R and Rank-1 Least Squares
por: Kuang, Li-Dan, et al.
Publicado: (2022) -
Magnetoencephalography for epileptic focus localization based on Tucker decomposition with ripple window
por: Shi, Li‐juan, et al.
Publicado: (2021) -
Effect of Spatial Smoothing on Task fMRI ICA and Functional Connectivity
por: Chen, Zikuan, et al.
Publicado: (2018) -
Reconstruction of Undersampled Big Dynamic MRI Data Using Non-Convex Low-Rank and Sparsity Constraints
por: Liu, Ryan Wen, et al.
Publicado: (2017)