Cargando…
Blood meal profile and positivity rate with malaria parasites among different malaria vectors in Sudan
BACKGROUND: Malaria is a life-threatening public health problem globally with particularly heavy burden in the sub-Saharan Africa including Sudan. The understanding of feeding preference of malaria vectors on different hosts is a major challenge for hindering the transmission cycle of malaria. In th...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9013081/ https://www.ncbi.nlm.nih.gov/pubmed/35428264 http://dx.doi.org/10.1186/s12936-022-04157-y |
Sumario: | BACKGROUND: Malaria is a life-threatening public health problem globally with particularly heavy burden in the sub-Saharan Africa including Sudan. The understanding of feeding preference of malaria vectors on different hosts is a major challenge for hindering the transmission cycle of malaria. In this study, blood meals taken by blood-fed Anopheles mosquitoes collected from the field in malaria endemic areas of Sudan were analysed for source of blood meal and malaria parasite presence. METHODS: Anopheles mosquitoes were collected from different regions in Sudan: Khartoum state, Sennar state, Northern state, and El Gedarif state between September 2020 and February 2021. Anopheles mosquitoes were collected using the standard pyrethrum spray catch and back-pack aspirator. Mosquito samples were sorted and morphologically identified to species level using international identification keys. Morphologically identified mosquito species were also confirmed using PCR. Genomic DNA was extracted from mosquitoes for molecular identification of blood meal source and parasite detection. The presence of Plasmodium species DNA in each mosquito sample was investigated using semi-nested PCR. Frequency of each blood meal source, Anopheles mosquito vector, and malaria parasite detected was calculated. Positivity rate of each fed female Anopheles mosquito was calculated for each species. RESULTS: A total of 2132 Anopheles mosquitoes were collected. 571 (26.8%) were males and 1561 (73.2%) were females classified based on their abdominal status into 1048 (67.1%) gravid, 274 (17.6%) fed, and 239 (15.3%) unfed females. Among the blood fed Anopheles mosquitoes, 263 (96.0%) were morphologically identified and confirmed using PCR to Anopheles arabiensis, 9 (3.3%) to Anopheles stephensi, and 2 (0.7%) to Anopheles rufipes. Of 274 blood-fed An. arabiensis, 68 (25.9%) fed on mixed blood meals from human and cattle, 8 (3.0%) fed on cattle and goat, and 13 (4.8%) fed on human, cattle and goat. For single blood meal sources, 70 (26.6%) fed on human, 95 (36.1%) fed on cattle, 8 (3.0%) fed on goat, and 1 (0.4%) fed on dog. While An. rufipes and An. stephensi fed on dog (2; 0.75%) and cattle (9; 3.3%), respectively. Plasmodium parasite detection in the blood meals showed that 25/274 (9.1%) An. arabiensis meals were positive for Plasmodium vivax and 19/274 (6.9%) An. arabiensis meals were positive for Plasmodium falciparum. The rate of positivity of An. arabiensis with any Plasmodium species was 16.7%. However, the positivity rate with P. falciparum only was 7.2%, while P. vivax was 9.5%. Both An. rufipes and An. stephensi were having positivity rates of 0.0% each. CONCLUSIONS: This study which was mainly on blood-fed Anopheles mosquitoes showed a diversity in the type of diet from human, cattle, and goat. Anopheles mosquitoes especially An. arabiensis in Sudan, are opportunistic blood feeders and can feed broadly on both human and cattle. The application of blood meal identification is not only important in malaria vector epidemiological surveillance but also is very useful in areas where arthropods exhibit zoophilic feeding behaviour for mammals. |
---|