Cargando…
Deep learning-based single image super-resolution for low-field MR brain images
Low-field MRI scanners are significantly less expensive than their high-field counterparts, which gives them the potential to make MRI technology more accessible all around the world. In general, images acquired using low-field MRI scanners tend to be of a relatively low resolution, as signal-to-noi...
Autores principales: | de Leeuw den Bouter, M. L., Ippolito, G., O’Reilly, T. P. A., Remis, R. F., van Gijzen, M. B., Webb, A. G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9013376/ https://www.ncbi.nlm.nih.gov/pubmed/35430586 http://dx.doi.org/10.1038/s41598-022-10298-6 |
Ejemplares similares
-
Light Field Image Super-Resolution Using Deep Residual Networks on Lenslet Images
por: Salem, Ahmed, et al.
Publicado: (2023) -
Mouse brain MR super-resolution using a deep learning network trained with optical imaging data
por: Liang, Zifei, et al.
Publicado: (2023) -
Far-field super-resolution ghost imaging with a deep neural network constraint
por: Wang, Fei, et al.
Publicado: (2022) -
Patch-Based Super-Resolution of MR Spectroscopic Images: Application to Multiple Sclerosis
por: Jain, Saurabh, et al.
Publicado: (2017) -
Far-field super-resolution imaging of resonant multiples
por: Guo, Bowen, et al.
Publicado: (2016)