Cargando…
Deep 3D attention CLSTM U-Net based automated liver segmentation and volumetry for the liver transplantation in abdominal CT volumes
In living-donor liver transplantation, the safety of the donor is critical. In addition, accurately measuring the liver volume is significant as the amount that can be resected from living donors is limited. In this paper, we propose an automated segmentation and volume estimation method for the liv...
Autores principales: | Jeong, Jin Gyo, Choi, Sangtae, Kim, Young Jae, Lee, Won-Suk, Kim, Kwang Gi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9013385/ https://www.ncbi.nlm.nih.gov/pubmed/35430594 http://dx.doi.org/10.1038/s41598-022-09978-0 |
Ejemplares similares
-
Automated pancreas segmentation and volumetry using deep neural network on computed tomography
por: Lim, Sang-Heon, et al.
Publicado: (2022) -
Expert-level segmentation using deep learning for volumetry of polycystic kidney and liver
por: Shin, Tae Young, et al.
Publicado: (2020) -
Scale-attentional U-Net for the segmentation of the median nerve in ultrasound images
por: Kim, Beom Suk, et al.
Publicado: (2022) -
U-Net combined with multi-scale attention mechanism for liver segmentation in CT images
por: Wu, Jiawei, et al.
Publicado: (2021) -
Attention-augmented U-Net (AA-U-Net) for semantic segmentation
por: Rajamani, Kumar T., et al.
Publicado: (2022)