Cargando…

3D Models of Cellular Spheroids As a Universal Tool for Studying the Cytotoxic Properties of Anticancer Compounds In Vitro

The aim of this work is to develop a 3D cell culture model based on cell spheroids for predicting the functional activity of various compounds in vivo. Agarose gel molds were made using 3D printing. The solidified agarose gel is a matrix consisting of nine low-adhesive U-shaped microwells of 2.3 × 3...

Descripción completa

Detalles Bibliográficos
Autores principales: Sogomonyan, A. S., Shipunova, V. O., Soloviev, V. D., Larionov, V. I., Kotelnikova, P. A., Deyev, S. M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: A.I. Gordeyev 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9013434/
https://www.ncbi.nlm.nih.gov/pubmed/35441052
http://dx.doi.org/10.32607/actanaturae.11603
_version_ 1784687994400145408
author Sogomonyan, A. S.
Shipunova, V. O.
Soloviev, V. D.
Larionov, V. I.
Kotelnikova, P. A.
Deyev, S. M.
author_facet Sogomonyan, A. S.
Shipunova, V. O.
Soloviev, V. D.
Larionov, V. I.
Kotelnikova, P. A.
Deyev, S. M.
author_sort Sogomonyan, A. S.
collection PubMed
description The aim of this work is to develop a 3D cell culture model based on cell spheroids for predicting the functional activity of various compounds in vivo. Agarose gel molds were made using 3D printing. The solidified agarose gel is a matrix consisting of nine low-adhesive U-shaped microwells of 2.3 × 3.3 mm for 3D cell spheroid formation and growth. This matrix is placed into a single well of a 12-well plate. The effectiveness of the cell culture method was demonstrated using human ovarian carcinoma SKOVip-kat cells stably expressing the red fluorescent protein Katushka in the cytoplasm and overexpressing the membrane-associated tumor marker HER2. The SKOVip-kat cell spheroids were visualized by fluorescence microscopy. The cell concentration required for the formation of same-shape and same-size spheroids with tight intercellular contacts was optimized. To verify the developed model, the cytotoxicity of the targeted immunotoxin anti-HER2 consisting of the anti-HER2 scaffold DARP 9_29 and a fragment of the Pseudomonas aeroginosa exotoxin, DARP-LoPE, was studied in 2D and 3D SKOVip-kat cell cultures. The existence of a difference in the cytotoxic properties of DARP-LoPE between the 2D and 3D cultures has been demonstrated: the IC(50) value in the 3D culture is an order of magnitude higher than that in the monolayer culture. The present work describes a universal tool for 3D cultivation of mammalian cells based on reusable agarose gel molds that allows for reproducible formation of multicellular spheroids with tight contacts for molecular and cell biology studies.
format Online
Article
Text
id pubmed-9013434
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher A.I. Gordeyev
record_format MEDLINE/PubMed
spelling pubmed-90134342022-04-18 3D Models of Cellular Spheroids As a Universal Tool for Studying the Cytotoxic Properties of Anticancer Compounds In Vitro Sogomonyan, A. S. Shipunova, V. O. Soloviev, V. D. Larionov, V. I. Kotelnikova, P. A. Deyev, S. M. Acta Naturae Research Article The aim of this work is to develop a 3D cell culture model based on cell spheroids for predicting the functional activity of various compounds in vivo. Agarose gel molds were made using 3D printing. The solidified agarose gel is a matrix consisting of nine low-adhesive U-shaped microwells of 2.3 × 3.3 mm for 3D cell spheroid formation and growth. This matrix is placed into a single well of a 12-well plate. The effectiveness of the cell culture method was demonstrated using human ovarian carcinoma SKOVip-kat cells stably expressing the red fluorescent protein Katushka in the cytoplasm and overexpressing the membrane-associated tumor marker HER2. The SKOVip-kat cell spheroids were visualized by fluorescence microscopy. The cell concentration required for the formation of same-shape and same-size spheroids with tight intercellular contacts was optimized. To verify the developed model, the cytotoxicity of the targeted immunotoxin anti-HER2 consisting of the anti-HER2 scaffold DARP 9_29 and a fragment of the Pseudomonas aeroginosa exotoxin, DARP-LoPE, was studied in 2D and 3D SKOVip-kat cell cultures. The existence of a difference in the cytotoxic properties of DARP-LoPE between the 2D and 3D cultures has been demonstrated: the IC(50) value in the 3D culture is an order of magnitude higher than that in the monolayer culture. The present work describes a universal tool for 3D cultivation of mammalian cells based on reusable agarose gel molds that allows for reproducible formation of multicellular spheroids with tight contacts for molecular and cell biology studies. A.I. Gordeyev 2022 /pmc/articles/PMC9013434/ /pubmed/35441052 http://dx.doi.org/10.32607/actanaturae.11603 Text en Copyright ® 2022 National Research University Higher School of Economics. https://creativecommons.org/licenses/by/2.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Sogomonyan, A. S.
Shipunova, V. O.
Soloviev, V. D.
Larionov, V. I.
Kotelnikova, P. A.
Deyev, S. M.
3D Models of Cellular Spheroids As a Universal Tool for Studying the Cytotoxic Properties of Anticancer Compounds In Vitro
title 3D Models of Cellular Spheroids As a Universal Tool for Studying the Cytotoxic Properties of Anticancer Compounds In Vitro
title_full 3D Models of Cellular Spheroids As a Universal Tool for Studying the Cytotoxic Properties of Anticancer Compounds In Vitro
title_fullStr 3D Models of Cellular Spheroids As a Universal Tool for Studying the Cytotoxic Properties of Anticancer Compounds In Vitro
title_full_unstemmed 3D Models of Cellular Spheroids As a Universal Tool for Studying the Cytotoxic Properties of Anticancer Compounds In Vitro
title_short 3D Models of Cellular Spheroids As a Universal Tool for Studying the Cytotoxic Properties of Anticancer Compounds In Vitro
title_sort 3d models of cellular spheroids as a universal tool for studying the cytotoxic properties of anticancer compounds in vitro
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9013434/
https://www.ncbi.nlm.nih.gov/pubmed/35441052
http://dx.doi.org/10.32607/actanaturae.11603
work_keys_str_mv AT sogomonyanas 3dmodelsofcellularspheroidsasauniversaltoolforstudyingthecytotoxicpropertiesofanticancercompoundsinvitro
AT shipunovavo 3dmodelsofcellularspheroidsasauniversaltoolforstudyingthecytotoxicpropertiesofanticancercompoundsinvitro
AT solovievvd 3dmodelsofcellularspheroidsasauniversaltoolforstudyingthecytotoxicpropertiesofanticancercompoundsinvitro
AT larionovvi 3dmodelsofcellularspheroidsasauniversaltoolforstudyingthecytotoxicpropertiesofanticancercompoundsinvitro
AT kotelnikovapa 3dmodelsofcellularspheroidsasauniversaltoolforstudyingthecytotoxicpropertiesofanticancercompoundsinvitro
AT deyevsm 3dmodelsofcellularspheroidsasauniversaltoolforstudyingthecytotoxicpropertiesofanticancercompoundsinvitro