Cargando…
Pupillary response to moving stimuli of different speeds
To investigate the pupillary response to moving stimuli of different speeds and the influence of different luminance environments, 28 participants with normal or corrected-to-normal vision were included. The participants were required to track moving optotypes horizontally, and their pupils were rec...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Bern Open Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9013523/ https://www.ncbi.nlm.nih.gov/pubmed/35440971 http://dx.doi.org/10.16910/jemr.14.1.3 |
_version_ | 1784688010146611200 |
---|---|
author | Wang, Yuexin Guo, Yining Wang, Jiajia Liu, Ziyuan Li, Xuemin |
author_facet | Wang, Yuexin Guo, Yining Wang, Jiajia Liu, Ziyuan Li, Xuemin |
author_sort | Wang, Yuexin |
collection | PubMed |
description | To investigate the pupillary response to moving stimuli of different speeds and the influence of different luminance environments, 28 participants with normal or corrected-to-normal vision were included. The participants were required to track moving optotypes horizontally, and their pupils were recorded on video with an infrared camera. Stimuli of different speeds from 10 to 60 degree per seconds were presented in low (0.01 cd/m2) and moderate (30 cd/m2) luminance environments. Experiment 1 demonstrated that the motion stimuli induced pupil dilation in a speed-dependent pattern. The pupil dilation increased as the speed increased, and the pupil dilation gradually increased, then reached saturation. Experiment 2 showed that a stimulus targeting the rod- or cone-mediated pathway could induce pupil dilation in a similar speed-dependent pattern. The absolute but not relative pupil dilation in the cone paradigm was significantly larger than that in the rod paradigm. As the speed increased, the pupil dilation in the cone paradigm reached saturation at speed slower than the rod paradigm. Motion stimuli induced pupil dilation in a speed-dependent pattern, and as the motion speed increased, the pupil dilation gradually increased and reached saturation. The speed required to reach saturation in the cone paradigm was slower than in the rod paradigm. |
format | Online Article Text |
id | pubmed-9013523 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Bern Open Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-90135232022-04-18 Pupillary response to moving stimuli of different speeds Wang, Yuexin Guo, Yining Wang, Jiajia Liu, Ziyuan Li, Xuemin J Eye Mov Res Research Article To investigate the pupillary response to moving stimuli of different speeds and the influence of different luminance environments, 28 participants with normal or corrected-to-normal vision were included. The participants were required to track moving optotypes horizontally, and their pupils were recorded on video with an infrared camera. Stimuli of different speeds from 10 to 60 degree per seconds were presented in low (0.01 cd/m2) and moderate (30 cd/m2) luminance environments. Experiment 1 demonstrated that the motion stimuli induced pupil dilation in a speed-dependent pattern. The pupil dilation increased as the speed increased, and the pupil dilation gradually increased, then reached saturation. Experiment 2 showed that a stimulus targeting the rod- or cone-mediated pathway could induce pupil dilation in a similar speed-dependent pattern. The absolute but not relative pupil dilation in the cone paradigm was significantly larger than that in the rod paradigm. As the speed increased, the pupil dilation in the cone paradigm reached saturation at speed slower than the rod paradigm. Motion stimuli induced pupil dilation in a speed-dependent pattern, and as the motion speed increased, the pupil dilation gradually increased and reached saturation. The speed required to reach saturation in the cone paradigm was slower than in the rod paradigm. Bern Open Publishing 2021-12-23 /pmc/articles/PMC9013523/ /pubmed/35440971 http://dx.doi.org/10.16910/jemr.14.1.3 Text en https://creativecommons.org/licenses/by/4.0/This work is licensed under a Creative Commons Attribution 4.0 International License, ( https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use and redistribution provided that the original author and source are credited. |
spellingShingle | Research Article Wang, Yuexin Guo, Yining Wang, Jiajia Liu, Ziyuan Li, Xuemin Pupillary response to moving stimuli of different speeds |
title | Pupillary response to moving stimuli of different speeds |
title_full | Pupillary response to moving stimuli of different speeds |
title_fullStr | Pupillary response to moving stimuli of different speeds |
title_full_unstemmed | Pupillary response to moving stimuli of different speeds |
title_short | Pupillary response to moving stimuli of different speeds |
title_sort | pupillary response to moving stimuli of different speeds |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9013523/ https://www.ncbi.nlm.nih.gov/pubmed/35440971 http://dx.doi.org/10.16910/jemr.14.1.3 |
work_keys_str_mv | AT wangyuexin pupillaryresponsetomovingstimuliofdifferentspeeds AT guoyining pupillaryresponsetomovingstimuliofdifferentspeeds AT wangjiajia pupillaryresponsetomovingstimuliofdifferentspeeds AT liuziyuan pupillaryresponsetomovingstimuliofdifferentspeeds AT lixuemin pupillaryresponsetomovingstimuliofdifferentspeeds |