Cargando…
SCU-Net: Semantic Segmentation Network for Learning Channel Information on Remote Sensing Images
Extracting detailed information from remote sensing images is an important direction in semantic segmentation. Not only the amounts of parameters and calculations of the network model in the learning process but also the prediction effect after learning must be considered. This paper designs a new m...
Autores principales: | Wang, Wei, Kang, Yuxi, Liu, Guanqun, Wang, Xin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9013575/ https://www.ncbi.nlm.nih.gov/pubmed/35440946 http://dx.doi.org/10.1155/2022/8469415 |
Ejemplares similares
-
W-Net: Convolutional neural network for segmenting remote sensing images by dual path semantics
por: Liu, Guangjie, et al.
Publicado: (2023) -
Region-Enhancing Network for Semantic Segmentation of Remote-Sensing Imagery
por: Zhong, Bo, et al.
Publicado: (2021) -
Knowledge and Geo-Object Based Graph Convolutional Network for Remote Sensing Semantic Segmentation
por: Cui, Wei, et al.
Publicado: (2021) -
Fast Semantic Segmentation of Remote Sensing Images Using a Network That Integrates Global and Local Information
por: Wu, Boyang, et al.
Publicado: (2023) -
TMNet: A Two-Branch Multi-Scale Semantic Segmentation Network for Remote Sensing Images
por: Gao, Yupeng, et al.
Publicado: (2023)