Cargando…

Application of Levenberg–Marquardt technique for electrical conducting fluid subjected to variable viscosity

In the present study, design of intelligent numerical computing through backpropagated neural networks (BNNs) is presented for numerical treatment of the fluid mechanics problems governing the dynamics of magnetohydrodynamic fluidic model (MHD-NFM) past a stretching surface embedded in porous medium...

Descripción completa

Detalles Bibliográficos
Autores principales: Shah, Z., Raja, M. A. Z., Khan, W. A., Shoaib, M., Asghar, Z., Waqas, M., Muhammad, Taseer
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer India 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9013636/
https://www.ncbi.nlm.nih.gov/pubmed/35463478
http://dx.doi.org/10.1007/s12648-022-02307-1
_version_ 1784688037359255552
author Shah, Z.
Raja, M. A. Z.
Khan, W. A.
Shoaib, M.
Asghar, Z.
Waqas, M.
Muhammad, Taseer
author_facet Shah, Z.
Raja, M. A. Z.
Khan, W. A.
Shoaib, M.
Asghar, Z.
Waqas, M.
Muhammad, Taseer
author_sort Shah, Z.
collection PubMed
description In the present study, design of intelligent numerical computing through backpropagated neural networks (BNNs) is presented for numerical treatment of the fluid mechanics problems governing the dynamics of magnetohydrodynamic fluidic model (MHD-NFM) past a stretching surface embedded in porous medium along with imposed heat source/sink and variable viscosity. The original system model MHD-NFM in terms of PDEs is converted to nonlinear ODEs by introducing the similarity transformations. A reference dataset for BNNs approach is generated with Adams numerical solver for different scenarios of MHD-NFM by variation of parameter of viscosity, parameter of heat source and sink, parameter of permeability, magnetic field parameter, and Prandtl number. To calculate the approximate solution for MHD-NFM for different scenarios, the training, testing, and validation processes are conducted in parallel to adapt neural networks by reducing the mean square error (MSE) function through Levenberg–Marquardt backpropagation. The comparative studies and performance analyses through outcomes of MSE, error histograms, correlation and regression demonstrate the effectiveness of proposed BNNs methodology.
format Online
Article
Text
id pubmed-9013636
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Springer India
record_format MEDLINE/PubMed
spelling pubmed-90136362022-04-18 Application of Levenberg–Marquardt technique for electrical conducting fluid subjected to variable viscosity Shah, Z. Raja, M. A. Z. Khan, W. A. Shoaib, M. Asghar, Z. Waqas, M. Muhammad, Taseer Indian J Phys Proc Indian Assoc Cultiv Sci (2004) Original Paper In the present study, design of intelligent numerical computing through backpropagated neural networks (BNNs) is presented for numerical treatment of the fluid mechanics problems governing the dynamics of magnetohydrodynamic fluidic model (MHD-NFM) past a stretching surface embedded in porous medium along with imposed heat source/sink and variable viscosity. The original system model MHD-NFM in terms of PDEs is converted to nonlinear ODEs by introducing the similarity transformations. A reference dataset for BNNs approach is generated with Adams numerical solver for different scenarios of MHD-NFM by variation of parameter of viscosity, parameter of heat source and sink, parameter of permeability, magnetic field parameter, and Prandtl number. To calculate the approximate solution for MHD-NFM for different scenarios, the training, testing, and validation processes are conducted in parallel to adapt neural networks by reducing the mean square error (MSE) function through Levenberg–Marquardt backpropagation. The comparative studies and performance analyses through outcomes of MSE, error histograms, correlation and regression demonstrate the effectiveness of proposed BNNs methodology. Springer India 2022-04-18 2022 /pmc/articles/PMC9013636/ /pubmed/35463478 http://dx.doi.org/10.1007/s12648-022-02307-1 Text en © Indian Association for the Cultivation of Science 2022 This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
spellingShingle Original Paper
Shah, Z.
Raja, M. A. Z.
Khan, W. A.
Shoaib, M.
Asghar, Z.
Waqas, M.
Muhammad, Taseer
Application of Levenberg–Marquardt technique for electrical conducting fluid subjected to variable viscosity
title Application of Levenberg–Marquardt technique for electrical conducting fluid subjected to variable viscosity
title_full Application of Levenberg–Marquardt technique for electrical conducting fluid subjected to variable viscosity
title_fullStr Application of Levenberg–Marquardt technique for electrical conducting fluid subjected to variable viscosity
title_full_unstemmed Application of Levenberg–Marquardt technique for electrical conducting fluid subjected to variable viscosity
title_short Application of Levenberg–Marquardt technique for electrical conducting fluid subjected to variable viscosity
title_sort application of levenberg–marquardt technique for electrical conducting fluid subjected to variable viscosity
topic Original Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9013636/
https://www.ncbi.nlm.nih.gov/pubmed/35463478
http://dx.doi.org/10.1007/s12648-022-02307-1
work_keys_str_mv AT shahz applicationoflevenbergmarquardttechniqueforelectricalconductingfluidsubjectedtovariableviscosity
AT rajamaz applicationoflevenbergmarquardttechniqueforelectricalconductingfluidsubjectedtovariableviscosity
AT khanwa applicationoflevenbergmarquardttechniqueforelectricalconductingfluidsubjectedtovariableviscosity
AT shoaibm applicationoflevenbergmarquardttechniqueforelectricalconductingfluidsubjectedtovariableviscosity
AT asgharz applicationoflevenbergmarquardttechniqueforelectricalconductingfluidsubjectedtovariableviscosity
AT waqasm applicationoflevenbergmarquardttechniqueforelectricalconductingfluidsubjectedtovariableviscosity
AT muhammadtaseer applicationoflevenbergmarquardttechniqueforelectricalconductingfluidsubjectedtovariableviscosity