Cargando…
A geometric relationship of F(2), F(3) and F(4)-statistics with principal component analysis
Principal component analysis (PCA) and F-statistics sensu Patterson are two of the most widely used population genetic tools to study human genetic variation. Here, I derive explicit connections between the two approaches and show that these two methods are closely related. F-statistics have a simpl...
Autor principal: | Peter, Benjamin M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9014194/ https://www.ncbi.nlm.nih.gov/pubmed/35430884 http://dx.doi.org/10.1098/rstb.2020.0413 |
Ejemplares similares
-
On the neural networks of empathy: A principal component analysis of an fMRI study
por: Nomi, Jason S, et al.
Publicado: (2008) -
Kernel Principal Component Analysis for dimensionality reduction in fMRI-based diagnosis of ADHD
por: Sidhu, Gagan S., et al.
Publicado: (2012) -
Spatial Normalization of (18)F-Flutemetamol PET Images Using an Adaptive Principal-Component Template
por: Lilja, Johan, et al.
Publicado: (2019) -
Functional Connectivity in Tactile Object Discrimination—A Principal Component Analysis of an Event Related fMRI-Study
por: Hartmann, Susanne, et al.
Publicado: (2008) -
fMRI Evidence of ‘Mirror’ Responses to Geometric Shapes
por: Press, Clare, et al.
Publicado: (2012)