Cargando…
Spike-Representation of EEG Signals for Performance Enhancement of Brain-Computer Interfaces
Brain-computer interfaces (BCI) relying on electroencephalography (EEG) based neuroimaging mode has shown prospects for real-world usage due to its portability and optional selectivity of fewer channels for compactness. However, noise and artifacts often limit the capacity of BCI systems especially...
Autores principales: | Singanamalla, Sai Kalyan Ranga, Lin, Chin-Teng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9014221/ https://www.ncbi.nlm.nih.gov/pubmed/35444515 http://dx.doi.org/10.3389/fnins.2022.792318 |
Ejemplares similares
-
Spiking Neural Network for Augmenting Electroencephalographic Data for Brain Computer Interfaces
por: Singanamalla, Sai Kalyan Ranga, et al.
Publicado: (2021) -
Review of Sparse Representation-Based Classification Methods on EEG Signal Processing for Epilepsy Detection, Brain-Computer Interface and Cognitive Impairment
por: Wen, Dong, et al.
Publicado: (2016) -
The influence of non-stationarity of spike signals on decoding performance in intracortical brain-computer interface: a simulation study
por: Wan, Zijun, et al.
Publicado: (2023) -
Dual attentive fusion for EEG-based brain-computer interfaces
por: Du, Yuanhua, et al.
Publicado: (2022) -
A Dry EEG-System for Scientific Research and Brain–Computer Interfaces
por: Zander, Thorsten Oliver, et al.
Publicado: (2011)