Cargando…
Decoupling the role of chemistry and microstructure in hMSCs response to an osteoinductive calcium phosphate ceramic
Calcium phosphates (CaP) are widely used synthetic bone graft substitutes, having bioactivity that is regulated by a set of intertwined physico-chemical and structural properties. While some CaPs have shown to be as effective in regenerating large bone defects as autologous bone, there is still the...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
KeAi Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9014318/ https://www.ncbi.nlm.nih.gov/pubmed/35475029 http://dx.doi.org/10.1016/j.bioactmat.2022.03.030 |
_version_ | 1784688181880291328 |
---|---|
author | Galván-Chacón, V.P. de Melo Pereira, D. Vermeulen, S. Yuan, H. Li, J. Habibović, P. |
author_facet | Galván-Chacón, V.P. de Melo Pereira, D. Vermeulen, S. Yuan, H. Li, J. Habibović, P. |
author_sort | Galván-Chacón, V.P. |
collection | PubMed |
description | Calcium phosphates (CaP) are widely used synthetic bone graft substitutes, having bioactivity that is regulated by a set of intertwined physico-chemical and structural properties. While some CaPs have shown to be as effective in regenerating large bone defects as autologous bone, there is still the need to understand the role of individual material properties in CaP performance. Here, we aimed to decouple the effects of chemical composition and surface-microstructure of a beta-tricalcium phosphate (TCP) ceramic, with proven osteoinductive potential, on human mesenchymal stromal cells (hMSCs) differentiation. To this end, we replicated the surface structure of the TCP ceramic into polylactic acid without inorganic additives, or containing the chemical constituents of the ceramic, i.e., a calcium salt, a phosphate salt, or TCP powder. The microstructure of the different materials was characterized by confocal laser profilometry. hMSCs were cultured on the materials, and the expression of a set of osteogenic genes was determined. The cell culture medium was collected and the levels of calcium and phosphate ions were quantified by inductively-coupled plasma mass spectrometry. The results revealed that none of the tested combinations of properties in polymer/composite replicas was as potent in supporting the osteogenic differentiation of hMSCs as the original ceramic. Nevertheless, we observed some effects of the surface structure in the absence of inorganics, as well as combined effects of surface structure and the added salts, in particular calcium, on osteogenic differentiation. The approach presented here can be used to study the role of independent properties in other CaP-based biomaterials. |
format | Online Article Text |
id | pubmed-9014318 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | KeAi Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-90143182022-04-25 Decoupling the role of chemistry and microstructure in hMSCs response to an osteoinductive calcium phosphate ceramic Galván-Chacón, V.P. de Melo Pereira, D. Vermeulen, S. Yuan, H. Li, J. Habibović, P. Bioact Mater Article Calcium phosphates (CaP) are widely used synthetic bone graft substitutes, having bioactivity that is regulated by a set of intertwined physico-chemical and structural properties. While some CaPs have shown to be as effective in regenerating large bone defects as autologous bone, there is still the need to understand the role of individual material properties in CaP performance. Here, we aimed to decouple the effects of chemical composition and surface-microstructure of a beta-tricalcium phosphate (TCP) ceramic, with proven osteoinductive potential, on human mesenchymal stromal cells (hMSCs) differentiation. To this end, we replicated the surface structure of the TCP ceramic into polylactic acid without inorganic additives, or containing the chemical constituents of the ceramic, i.e., a calcium salt, a phosphate salt, or TCP powder. The microstructure of the different materials was characterized by confocal laser profilometry. hMSCs were cultured on the materials, and the expression of a set of osteogenic genes was determined. The cell culture medium was collected and the levels of calcium and phosphate ions were quantified by inductively-coupled plasma mass spectrometry. The results revealed that none of the tested combinations of properties in polymer/composite replicas was as potent in supporting the osteogenic differentiation of hMSCs as the original ceramic. Nevertheless, we observed some effects of the surface structure in the absence of inorganics, as well as combined effects of surface structure and the added salts, in particular calcium, on osteogenic differentiation. The approach presented here can be used to study the role of independent properties in other CaP-based biomaterials. KeAi Publishing 2022-04-08 /pmc/articles/PMC9014318/ /pubmed/35475029 http://dx.doi.org/10.1016/j.bioactmat.2022.03.030 Text en © 2022 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Galván-Chacón, V.P. de Melo Pereira, D. Vermeulen, S. Yuan, H. Li, J. Habibović, P. Decoupling the role of chemistry and microstructure in hMSCs response to an osteoinductive calcium phosphate ceramic |
title | Decoupling the role of chemistry and microstructure in hMSCs response to an osteoinductive calcium phosphate ceramic |
title_full | Decoupling the role of chemistry and microstructure in hMSCs response to an osteoinductive calcium phosphate ceramic |
title_fullStr | Decoupling the role of chemistry and microstructure in hMSCs response to an osteoinductive calcium phosphate ceramic |
title_full_unstemmed | Decoupling the role of chemistry and microstructure in hMSCs response to an osteoinductive calcium phosphate ceramic |
title_short | Decoupling the role of chemistry and microstructure in hMSCs response to an osteoinductive calcium phosphate ceramic |
title_sort | decoupling the role of chemistry and microstructure in hmscs response to an osteoinductive calcium phosphate ceramic |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9014318/ https://www.ncbi.nlm.nih.gov/pubmed/35475029 http://dx.doi.org/10.1016/j.bioactmat.2022.03.030 |
work_keys_str_mv | AT galvanchaconvp decouplingtheroleofchemistryandmicrostructureinhmscsresponsetoanosteoinductivecalciumphosphateceramic AT demelopereirad decouplingtheroleofchemistryandmicrostructureinhmscsresponsetoanosteoinductivecalciumphosphateceramic AT vermeulens decouplingtheroleofchemistryandmicrostructureinhmscsresponsetoanosteoinductivecalciumphosphateceramic AT yuanh decouplingtheroleofchemistryandmicrostructureinhmscsresponsetoanosteoinductivecalciumphosphateceramic AT lij decouplingtheroleofchemistryandmicrostructureinhmscsresponsetoanosteoinductivecalciumphosphateceramic AT habibovicp decouplingtheroleofchemistryandmicrostructureinhmscsresponsetoanosteoinductivecalciumphosphateceramic |