Cargando…
Systematic Data-Driven Modeling of Bimetallic Catalyst Performance for the Hydrogenation of 5-Ethoxymethylfurfural with Variable Selection and Regularization
[Image: see text] Catalyst development for biorefining applications involves many challenges. Mathematical modeling can be seen as an essential tool in assisting to explain catalyst performance. This paper presents studies on several machine learning (ML) methods that can model the performance of he...
Autores principales: | Uusitalo, Pekka, Sorsa, Aki, Russo Abegão, Fernando, Ohenoja, Markku, Ruusunen, Mika |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9014324/ https://www.ncbi.nlm.nih.gov/pubmed/35450012 http://dx.doi.org/10.1021/acs.iecr.1c03995 |
Ejemplares similares
-
Hierarchical Control of an Integrated Fuel Processing and Fuel Cell System
por: Ohenoja, Markku, et al.
Publicado: (2018) -
Efficient synthesis of 5-ethoxymethylfurfural from biomass-derived 5-hydroxymethylfurfural over sulfonated organic polymer catalyst
por: Xiang, Yanping, et al.
Publicado: (2021) -
Sub-Surface Analysis of Grinding Burns with Barkhausen Noise Measurements
por: Sorsa, Aki, et al.
Publicado: (2022) -
Catalytic Upgrading of Lignocellulosic Biomass Sugars Toward Biofuel 5-Ethoxymethylfurfural
por: Liu, Xiaofang, et al.
Publicado: (2022) -
Sulfonic acid-functionalized PCP(Cr) catalysts with Cr(3+) and –SO(3)H sites for 5-ethoxymethylfurfural production from glucose
por: Zhang, Luxin, et al.
Publicado: (2021)