Cargando…

Spin-Forbidden Carbon–Carbon Bond Formation in Vibrationally Excited α-CO

[Image: see text] Fourier transform infrared spectroscopy of laser-irradiated cryogenic crystals shows that vibrational excitation of CO leads to the production of equal amounts of CO(2) and C(3)O(2). The reaction mechanism is explored using electronic structure calculations, demonstrating that the...

Descripción completa

Detalles Bibliográficos
Autores principales: DeVine, Jessalyn A., Choudhury, Arnab, Lau, Jascha A., Schwarzer, Dirk, Wodtke, Alec M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9014413/
https://www.ncbi.nlm.nih.gov/pubmed/35380441
http://dx.doi.org/10.1021/acs.jpca.2c01168
_version_ 1784688196210130944
author DeVine, Jessalyn A.
Choudhury, Arnab
Lau, Jascha A.
Schwarzer, Dirk
Wodtke, Alec M.
author_facet DeVine, Jessalyn A.
Choudhury, Arnab
Lau, Jascha A.
Schwarzer, Dirk
Wodtke, Alec M.
author_sort DeVine, Jessalyn A.
collection PubMed
description [Image: see text] Fourier transform infrared spectroscopy of laser-irradiated cryogenic crystals shows that vibrational excitation of CO leads to the production of equal amounts of CO(2) and C(3)O(2). The reaction mechanism is explored using electronic structure calculations, demonstrating that the lowest-energy pathway involves a spin-forbidden reaction of (CO)(2) yielding C((3)P) + CO(2). C((3)P) then undergoes barrierless recombination with two other CO molecules forming C(3)O(2). Calculated intersystem crossing rates support the spin-forbidden mechanism, showing subpicosecond spin-flipping time scales for a (CO)(2) geometry that is energetically consistent with states accessed through vibrational energy pooling. This spin-flip occurs with an estimated ∼4% efficiency; on the singlet surface, (CO)(2) reconverts back to CO monomers, releasing heat which induces CO desorption. The discovery that vibrational excitation of condensed-phase CO leads to spin-forbidden C–C bond formation may be important to the development of accurate models of interstellar chemistry.
format Online
Article
Text
id pubmed-9014413
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-90144132022-04-19 Spin-Forbidden Carbon–Carbon Bond Formation in Vibrationally Excited α-CO DeVine, Jessalyn A. Choudhury, Arnab Lau, Jascha A. Schwarzer, Dirk Wodtke, Alec M. J Phys Chem A [Image: see text] Fourier transform infrared spectroscopy of laser-irradiated cryogenic crystals shows that vibrational excitation of CO leads to the production of equal amounts of CO(2) and C(3)O(2). The reaction mechanism is explored using electronic structure calculations, demonstrating that the lowest-energy pathway involves a spin-forbidden reaction of (CO)(2) yielding C((3)P) + CO(2). C((3)P) then undergoes barrierless recombination with two other CO molecules forming C(3)O(2). Calculated intersystem crossing rates support the spin-forbidden mechanism, showing subpicosecond spin-flipping time scales for a (CO)(2) geometry that is energetically consistent with states accessed through vibrational energy pooling. This spin-flip occurs with an estimated ∼4% efficiency; on the singlet surface, (CO)(2) reconverts back to CO monomers, releasing heat which induces CO desorption. The discovery that vibrational excitation of condensed-phase CO leads to spin-forbidden C–C bond formation may be important to the development of accurate models of interstellar chemistry. American Chemical Society 2022-04-05 2022-04-14 /pmc/articles/PMC9014413/ /pubmed/35380441 http://dx.doi.org/10.1021/acs.jpca.2c01168 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle DeVine, Jessalyn A.
Choudhury, Arnab
Lau, Jascha A.
Schwarzer, Dirk
Wodtke, Alec M.
Spin-Forbidden Carbon–Carbon Bond Formation in Vibrationally Excited α-CO
title Spin-Forbidden Carbon–Carbon Bond Formation in Vibrationally Excited α-CO
title_full Spin-Forbidden Carbon–Carbon Bond Formation in Vibrationally Excited α-CO
title_fullStr Spin-Forbidden Carbon–Carbon Bond Formation in Vibrationally Excited α-CO
title_full_unstemmed Spin-Forbidden Carbon–Carbon Bond Formation in Vibrationally Excited α-CO
title_short Spin-Forbidden Carbon–Carbon Bond Formation in Vibrationally Excited α-CO
title_sort spin-forbidden carbon–carbon bond formation in vibrationally excited α-co
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9014413/
https://www.ncbi.nlm.nih.gov/pubmed/35380441
http://dx.doi.org/10.1021/acs.jpca.2c01168
work_keys_str_mv AT devinejessalyna spinforbiddencarboncarbonbondformationinvibrationallyexcitedaco
AT choudhuryarnab spinforbiddencarboncarbonbondformationinvibrationallyexcitedaco
AT laujaschaa spinforbiddencarboncarbonbondformationinvibrationallyexcitedaco
AT schwarzerdirk spinforbiddencarboncarbonbondformationinvibrationallyexcitedaco
AT wodtkealecm spinforbiddencarboncarbonbondformationinvibrationallyexcitedaco