Cargando…
Integrating Domain Knowledge Into Deep Networks for Lung Ultrasound With Applications to COVID-19
Lung ultrasound (LUS) is a cheap, safe and non-invasive imaging modality that can be performed at patient bed-side. However, to date LUS is not widely adopted due to lack of trained personnel required for interpreting the acquired LUS frames. In this work we propose a framework for training deep art...
Formato: | Online Artículo Texto |
---|---|
Lenguaje: | English |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9014480/ https://www.ncbi.nlm.nih.gov/pubmed/34606447 http://dx.doi.org/10.1109/TMI.2021.3117246 |
Ejemplares similares
-
Domain knowledge integration into deep learning for typhoon intensity classification
por: Higa, Maiki, et al.
Publicado: (2021) -
A Review of Deep Learning Applications in Lung Ultrasound Imaging of COVID-19 Patients
por: Zhao, Lingyi, et al.
Publicado: (2022) -
A review of some techniques for inclusion of domain-knowledge into deep neural networks
por: Dash, Tirtharaj, et al.
Publicado: (2022) -
Deep learning and lung ultrasound for Covid-19 pneumonia detection and severity classification
por: La Salvia, Marco, et al.
Publicado: (2021) -
Deep-learning based detection of COVID-19 using lung ultrasound imagery
por: Diaz-Escobar, Julia, et al.
Publicado: (2021)