Cargando…

Diagnostic performance of quantitative coronary artery disease assessment using computed tomography in patients with aortic stenosis undergoing transcatheter aortic-valve implantation

BACKGROUND: Computed tomography angiography (CTA) is a cornerstone in the pre- transcatheter aortic valve replacement (TAVI) assessment. We evaluated the diagnostic performance of CTA and coronary artery calcium score (CACS) for CAD evaluation compared to invasive coronary angiography in a cohort of...

Descripción completa

Detalles Bibliográficos
Autores principales: Malebranche, Daniel, Hoffner, Maximilian K. M., Huber, Adrian T., Cicovic, Aleksandar, Spano, Giancarlo, Bernhard, Benedikt, Bartkowiak, Joanna, Okuno, Taishi, Lanz, Jonas, Räber, Lorenz, Praz, Fabien, Stortecky, Stefan, Windecker, Stephan, Pilgrim, Thomas, Gräni, Christoph
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9014581/
https://www.ncbi.nlm.nih.gov/pubmed/35436856
http://dx.doi.org/10.1186/s12872-022-02623-8
Descripción
Sumario:BACKGROUND: Computed tomography angiography (CTA) is a cornerstone in the pre- transcatheter aortic valve replacement (TAVI) assessment. We evaluated the diagnostic performance of CTA and coronary artery calcium score (CACS) for CAD evaluation compared to invasive coronary angiography in a cohort of TAVI patients. METHODS: In consecutive TAVI patients without prior coronary revascularization and device implants, CAD was assessment by quantitative analysis in CTA. (a) Patients with non-evaluable segments were classified as obstructive CAD. (b) In patients with non-evaluable segments a CACS cut-off of 100 was applied for obstructive CAD. The reference standard was quantitative invasive coronary angiography (QCA, i.e. ≥ 50% stenosis). RESULTS: 100 consecutive patients were retrospectively included, age was 82.3 ± 6.5 years and 30% of patients had CAD. In 16% of the patients, adequate visualization of the entire coronary tree (all 16 segments) was possible with CTA, while 84% had at least one segment which was not evaluable for CAD analysis due to impaired image quality. On a per-patient analysis, where patients with low image quality were classified as CAD, CTA showed a sensitivity of 100% (95% CI 88.4–100.0), specificity of 11.4% (95% CI 5.1–21.3), PPV of 32.6% (95% CI 30.8–34.5), NPV of 100% and diagnostic accuracy of 38% (95% CI 28.5–48.3) for obstructive CAD. When applying a combined approach of CTA (in patients with good image quality) and CACS (in patients with low image quality), the sensitivity and NPV remained at 100% and obstructive CAD could be ruled out in 20% of the TAVI patients, versus 8% using CTA alone. CONCLUSION: In routinely acquired pre-TAVI CTA, the image quality was insufficient in a high proportion of patients for the assessment of the entire coronary artery tree. However, when adding CACS in patients with low image quality to quantitative CTA assessment in patients with good image quality, obstructive CAD could be ruled-out in 1/5 of the patients and may therefore constitute a strategy to streamline pre-procedural workup, and reduce risk, radiation and costs in selected TAVI patients without prior coronary revascularization or device implants. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12872-022-02623-8.