Cargando…

Is glycaemic control associated with dietary patterns independent of weight change in people newly diagnosed with type 2 diabetes? Prospective analysis of the Early-ACTivity-In-Diabetes trial

BACKGROUND: It is unclear whether diet affects glycaemic control in type 2 diabetes (T2D), over and above its effects on bodyweight. We aimed to assess whether changes in dietary patterns altered glycaemic control independently of effects on bodyweight in newly diagnosed T2D. METHODS: We used data f...

Descripción completa

Detalles Bibliográficos
Autores principales: Garbutt, James, England, C., Jones, A. G., Andrews, R. C., Salway, R., Johnson, L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9014614/
https://www.ncbi.nlm.nih.gov/pubmed/35430794
http://dx.doi.org/10.1186/s12916-022-02358-5
Descripción
Sumario:BACKGROUND: It is unclear whether diet affects glycaemic control in type 2 diabetes (T2D), over and above its effects on bodyweight. We aimed to assess whether changes in dietary patterns altered glycaemic control independently of effects on bodyweight in newly diagnosed T2D. METHODS: We used data from 4-day food diaries, HbA1c and potential confounders in participants of the Early-ACTivity-In-Diabetes trial measured at 0, 6 and 12 months. At baseline, a ‘carb/fat balance’ dietary pattern and an ‘obesogenic’ dietary pattern were derived using reduced-rank regression, based on hypothesised nutrient-mediated mechanisms linking dietary intake to glycaemia directly or via obesity. Relationships between 0 and 6 month change in dietary pattern scores and baseline-adjusted HbA1c at 6 months (n = 242; primary outcome) were assessed using multivariable linear regression. Models were repeated for periods 6–12 months and 0–12 months (n = 194 and n = 214 respectively; secondary outcomes). RESULTS: Reductions over 0–6 months were observed in mean bodyweight (− 2.3 (95% CI: − 2.7, − 1.8) kg), body mass index (− 0.8 (− 0.9, − 0.6) kg/m(2)), energy intake (− 788 (− 953, − 624) kJ/day), and HbA1c (− 1.6 (− 2.6, -0.6) mmol/mol). Weight loss strongly associated with lower HbA1c at 0–6 months (β = − 0.70 [95% CI − 0.95, − 0.45] mmol/mol/kg lost). Average fat and carbohydrate intakes changed to be more in-line with UK healthy eating guidelines between 0 and 6 months. Dietary patterns shifting carbohydrate intakes higher and fat intakes lower were characterised by greater consumption of fresh fruit, low-fat milk and boiled/baked potatoes and eating less of higher-fat processed meats, butter/animal fats and red meat. Increases in standardised ‘carb/fat balance’ dietary pattern score associated with improvements in HbA1c at 6 months independent of weight loss (β = − 1.54 [− 2.96, − 0.13] mmol/mol/SD). No evidence of association with HbA1c was found for this dietary pattern at other time-periods. Decreases in ‘obesogenic’ dietary pattern score were associated with weight loss (β = − 0.77 [− 1.31, − 0.23] kg/SD) but not independently with HbA1c during any period. CONCLUSIONS: Promoting weight loss should remain the primary nutritional strategy for improving glycaemic control in early T2D. However, improving dietary patterns to bring carbohydrate and fat intakes closer to UK guidelines may provide small, additional improvements in glycaemic control. TRIAL REGISTRATION: ISRCTN92162869. Retrospectively registered on 25 July 2005 SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12916-022-02358-5.