Cargando…
XGBoost-based and tumor-immune characterized gene signature for the prediction of metastatic status in breast cancer
BACKGROUND: For a long time, breast cancer has been a leading cancer diagnosed in women worldwide, and approximately 90% of cancer-related deaths are caused by metastasis. For this reason, finding new biomarkers related to metastasis is an urgent task to predict the metastatic status of breast cance...
Autores principales: | Li, Qingqing, Yang, Hui, Wang, Peipei, Liu, Xiaocen, Lv, Kun, Ye, Mingquan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9014628/ https://www.ncbi.nlm.nih.gov/pubmed/35436939 http://dx.doi.org/10.1186/s12967-022-03369-9 |
Ejemplares similares
-
m(6)A RNA methylation regulator-based signature for prognostic prediction and its potential immunological role in uterine corpus endometrial carcinoma
por: Fang, Fang, et al.
Publicado: (2022) -
A two-stage hybrid gene selection algorithm combined with machine learning models to predict the rupture status in intracranial aneurysms
por: Li, Qingqing, et al.
Publicado: (2022) -
A risk prediction model of gene signatures in ovarian cancer through bagging of GA-XGBoost models
por: Hsiao, Yi-Wen, et al.
Publicado: (2020) -
XGBoost Improves Classification of MGMT Promoter Methylation Status in IDH1 Wildtype Glioblastoma
por: Le, Nguyen Quoc Khanh, et al.
Publicado: (2020) -
Identification of a tumor immune-inflammation signature predicting prognosis and immune status in breast cancer
por: Liu, Yajing, et al.
Publicado: (2023)