Cargando…
ROSIE: RObust Sparse ensemble for outlIEr detection and gene selection in cancer omics data
The extraction of novel information from omics data is a challenging task, in particular, since the number of features (e.g. genes) often far exceeds the number of samples. In such a setting, conventional parameter estimation leads to ill-posed optimization problems, and regularization may be requir...
Autores principales: | Jensch, Antje, Lopes, Marta B., Vinga, Susana, Radde, Nicole |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9014683/ https://www.ncbi.nlm.nih.gov/pubmed/35072570 http://dx.doi.org/10.1177/09622802211072456 |
Ejemplares similares
-
Ensemble outlier detection and gene selection in triple-negative breast cancer data
por: Lopes, Marta B., et al.
Publicado: (2018) -
Robust identification of target genes and outliers in triple-negative
breast cancer data
por: Segaert, Pieter, et al.
Publicado: (2018) -
Teaching with Rosy
Publicado: (1981) -
Sampling-based Bayesian approaches reveal the importance of quasi-bistable behavior in cellular decision processes on the example of the MAPK signaling pathway in PC-12 cell lines
por: Jensch, Antje, et al.
Publicado: (2017) -
François Ier /
por: Castelot, André
Publicado: (1983)